Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial
Date
2016-12-05
Author
Tahmasebifar, Aydin
KAYHAN, Said Murat
Evis, Zafer
Tezcaner, Ayşen
Cinici, Hanifi
Koc, Muammer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
In this study, the effect of manufacturing conditions (i.e. compaction pressure, sintering temperature and time) on physical, mechanical and electrochemical properties of Mg alloy discs were investigated. The main motivation of this study was to achieve the manufacturing of porous and micro-surface textured Mg-based biomedical implants with good mechanical and electrochemical properties. A Box-Behnken and Full Factorial experimental design was used in experimental investigations. Relative densities of the fabricated plates varied from 69.7 +/- 1% to 81.5 +/- 4%. According to ANOVA (Analysis of variances) test, manufacturing conditions, except the compaction pressure level, did not affect the relative density significantly. The bending strength of the fabricated plates was in the range of 30.3 +/- 2 MPa and 53.7 +/- 1 MPa. Compaction pressure led to an increase in the bending strength while sintering temperature and time decreased it. Electrochemical tests were conducted using Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and 10% Fetal Bovine Serum (FBS) + DMEM. The lowest and the highest corrosion potentials were measured in Hank's and 10% FBS + DMEM solutions, respectively. Pitting corrosion was detected on the surface of Mg alloy discs. The discs with smooth surfaces showed lower corrosion resistance than the discs with porous and micro-textured surfaces in the presence of FBS. It was concluded that the manufacturing of porous and micro-surface textured Mg-based biomedical implant using powder forming process was feasible due to the convenience of mass scale near net shape production with sufficient material properties. In addition, the cell culture studies showed that micro texture and roughness on the surface positively affected cell adhesion, proliferation and osteogenic activity. AZ91D-Mg alloy plates showed good cytocompatibility with high cell proliferation compared to control groups at each incubation time period.
Subject Keywords
Powder metallurgy
,
Micro-texture
,
Porous surface
,
Magnesium alloy
,
Biomedical implant
URI
https://hdl.handle.net/11511/46815
Journal
JOURNAL OF ALLOYS AND COMPOUNDS
DOI
https://doi.org/10.1016/j.jallcom.2016.05.256
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Surface morphology investigation of a biodegradable magnesium alloy
Tahmasebifar, Aydin; Evis, Zafer; Koç, Muammer; Department of Engineering Sciences (2015)
In this study, the effect of manufacturing conditions (i.e. compaction pressure, sintering temperature and time) on physical, mechanical and electrochemical properties of Mg alloy discs as samples of biomedical implants prepared using powder forming technology were investigated. The main motivation of this study was to achieve the manufacturing of porous and micro-surface textured Mg-based biomedical implants with good mechanical and electrochemical properties. A Box-Behnken and Full Factorial experimental ...
Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process
Ozturk, Fahrettin; Ece, Remzi Ecmel; Polat, Naki; Koksal, Arif; Evis, Zafer; Polat, Aytekin (Elsevier BV, 2013-08-20)
In this study, effect of temperature in the electrical resistance heating process on mechanical properties and microstructures of commercially pure titanium grade 2 (CP2) and Ti-6Al-4V (T64) alloy sheets was investigated. Sheets were successfully heated by the electric resistance heating process, and their mechanical properties and microstructures were evaluated. Ductilities of both materials were increased significantly after 400 degrees C. Results indicate that no significant change was observed in grain ...
Investigation of the effect of orientation and heat treatment on the stress corrosion cracking susceptibility of 7050 aluminium alloy
Çevik, Gül; Doruk, Mustafa; Department of Metallurgical and Materials Engineering (2004)
In the present work, the effect of variation in specimen orientation and heat treatment on the Stress Corrosion Cracking (SCC) susceptibility of 7050 aluminum alloy was investigated in 3,5% NaCl solution and under freely corroding conditions. For this purpose, Constant Extension Rate Tests (CERT) was performed on precracked Compact Tension (CT) specimens and the Direct Current Potential Drop technique was applied to measure the crack lengths. In addition to crack length versus time curves, the relationship ...
Manufacturing, mechanical and microstructural characterization of AZ91D magnesium alloy for biomedical applications
Kayhan, Said Murat; Evis, Zafer; Koç, Muammer; Department of Engineering Sciences (2015)
In this study, the microstructural and mechanical properties of the Mg-based implant samples prepared via powder metallurgy route were investigated. Moreover, the biological response of the Mg-based implant samples was investigated. AZ91D Mg alloy discs with smooth and textured surfaces were manufactured under compaction pressures of 25 and 40 MPa at 150⁰C. They were then sintered at 380⁰C for 30 and 150 mins. The microstructural evaluation was conducted through SEM and light microcopy images. As compaction...
Production and characterization of porous titanium alloys
Esen, Ziya; Bor, Şakir; Department of Metallurgical and Materials Engineering (2007)
In the present study, production of titanium and Ti6Al4V alloy foams has been investigated using powder metallurgical “space holder technique” in which magnesium powder were utilized to generate porosities in the range 30 to 90 vol. %. Also, sintering of titanium and Ti-6Al-4V alloy powders in loose and compacted condition at various temperatures (850-1250oC) and compaction pressures (120-1125 MPa), respectively, were investigated to elucidate the structure and mechanical properties of the porous cell walls...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Tahmasebifar, S. M. KAYHAN, Z. Evis, A. Tezcaner, H. Cinici, and M. Koc, “Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial,”
JOURNAL OF ALLOYS AND COMPOUNDS
, pp. 906–919, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46815.