Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Prevalence of pathogens and other associated microorganisms in Turkish honeybee subspecies and differential responses to nosema ceranae infection
Download
index.pdf
Date
2015
Author
Tozkar, Cansu Özge
Metadata
Show full item record
Item Usage Stats
293
views
165
downloads
Cite This
Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers of apiculture, harboring 5 subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. 60 megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, Apis filamentous virus and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. Additionally we addressed the immune defence reactions, locomotor activity differences of five honey bee subspecies upon N. ceranae infection and confirmed the phylogenetic relationship between these subspecies. It was observed that honey bee immune system quickly activated defence mechanisms for all of five the subspecies after infection with N .ceranae, which includes the increase in the expression of genes encoding antimicrobial peptides.
Subject Keywords
Bees.
,
Bees
,
Honeybee.
,
Honeybee
URI
http://etd.lib.metu.edu.tr/upload/12619458/index.pdf
https://hdl.handle.net/11511/25205
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Metatranscriptomic analyses of honey bee colonies
Tozkar, Cansu O.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D. (2015-03-19)
Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis rnellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and ...
Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim
Ravoet, Jorgen; Schwarz, Ryan S.; Descamps, Tine; Yanez, Orlando; Tozkar, Cansu Ozge; Martin-Hernandez, Raquel; Bartolome, Carolina; De Smet, Lina; Higes, Mariano; Wenseleers, Tom; Schmid-Hempel, Regula; Neumann, Peter; Kadowaki, Tatsuhiko; Evans, Jay D.; de Graaf, Dirk C. (2015-09-01)
Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumbl...
Differences in learning performance and related behaviors across three honey bee subspecies from Turkey
Erdem, Babür; Somel, Mehmet; Giray, Tuğrul; Department of Biology (2018)
In this thesis we studied learning performance in 3 subspecies of honey bee (Apis mellifera L.), Carniolan honey bee (A. m. carnica), Syrian honey bee (A. m. syriaca), and Caucasian honey bee (A. m. caucasica). These subspecies are found in remote corners of Turkey and apparently morphologically and genetically diverged from each other. Previous studies have illustrated differences in foraging and defense behavior across these subspecies. Also, numerous examples of behavioral differences across species or s...
Cloning of chitinase a gene (chiA) from serratia marcescens Bn10 and its expression in coleoptera-specific bacillus thuringiensis
Okay, Sezer; Özcengiz, Gülay; Department of Biology (2005)
Chitinases have been shown to be potential agents for biological control of the plant diseases caused by various phytopathogenic fungi and insect pests, because fungal cell walls and insect exoskeletons contain chitin as a major structural component. Chitinase has also been found to increase the efficacy and potency of Bacillus thuringiensis crystal (Cry) proteins toxic to larvae of insect pests. The reason of this synergy is the presence of chitin in the structure of the outer membrane of larval midgut. In...
Behavioral and molecular impact of a stress factor, acaricide perizin on honey bees (apis mellifera) of Turkey
Arslan, Okan Can; Adalı, Orhan; Department of Biology (2020-9)
The effects of acaricide Perizin (coumaphos as the active ingredient) which is used against parasitic mite, Varroa destructor, on three native honey bee subspecies; Apis mellifera caucasica, A. m. carnica and A. m. syriaca. in terms of behavioral, molecular, and genetic aspects were investigated. After acute sub-lethal exposure to various doses of coumaphos, the worker bees of control and treatment groups were subjected to activity monitoring tests for evaluation of locomotor activity, electric shock ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Ö. Tozkar, “Prevalence of pathogens and other associated microorganisms in Turkish honeybee subspecies and differential responses to nosema ceranae infection,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.