Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Grounded and contextualized web of concepts on a humanoid robot
Download
index.pdf
Date
2015
Author
Çelikkanat, Hande
Metadata
Show full item record
Item Usage Stats
202
views
116
downloads
Cite This
In this thesis, we propose a formalization for a densely connected representation of concepts and their contexts on a humanoid robot platform. Although concepts have been studied implicitly and explicitly in numerous studies before,our study is unique in placing the relatedness of concepts to the center: We hypothesize that a concept is fully meaningful only when considered in relation to the other concepts. Thus, we propose a novel densely connected web of concepts, and show how utilizing the relatedness of concepts can take cognition one step forward from the conventional approach that treats them individually. Then we use this densely connected framework for determining the context of encountered scenes. Although unanimously accepted as one of the pillars of cognition, our study is the first attempt to provide a dedicated and general formalization of context in a robotics setting. We follow a developmental approach in which the robot determines the existing contexts in its environment in an unsupervised manner, associates seen objects and whole scenes with these contexts as appropriate, and further utilizes this extracted contextual information in reasoning and planning. As required by the developmental paradigm, the programmer’s input to the robot in terms of informational bias is kept at a minimum, and the robot is expected to deduce the important characteristics of the environment itself, such as the number of contexts hidden in its environment, if and when to introduce another context to its world model, and how these contexts probabilistically give rise to the related concepts in this world.
Subject Keywords
Androids.
,
Robotics.
,
Semantic Web.
,
Evolutionary robotics.
URI
http://etd.lib.metu.edu.tr/upload/12619502/index.pdf
https://hdl.handle.net/11511/25262
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Building a web of concepts on a humanoid robot
Orhan, Güner; Kalkan, Sinan; Department of Computer Engineering (2014)
In this thesis, an effective approach for predicting nouns, adjectives and verbs is introduced for more effective communication between a humanoid robot and a human actor. There are three important challenges addressed by our approach: The first one is the accurate prediction of words in language. Most of the existing robotics studies predict words in language using perceptual information only. However, due to noise and ambiguity in low-level sensory information, prediction using perceptual information is o...
The learning and use of traversability affordance using range images on a mobile robot
Ugur, Emre; Dogar, Mehmet R.; Cakmak, Maya; Şahin, Erol (2007-04-14)
We are interested in how the concept of affordances can affect our view to autonomous robot control, and how the results obtained from autonomous robotics can be reflected back upon the discussion and studies on the concept of affordances. In this paper, we studied how a mobile robot, equipped with a 3D laser scanner, can learn to perceive the traversability affordance and use it to wander in a room filled with spheres, cylinders and boxes. The results showed that after learning, the robot can wander around...
Reshaping human intentions by autonomous sociable robot moves through intention transients generated by elastic networks considering human emotions
Görür, Orhan Can; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2014)
This thesis focuses on reshaping a previously detected human intention into a desired one, using contextual motions of mobile robots, which are in our applications, autonomous mobile 2-steps and a chair. Our system first estimates the current intention based on human trajectory depicted as location and detects body-mood of the person based on proxemics behaviors. Our previous reshaping applications have shown that the current human intention has to be deviated towards the new desired one in phases according...
A Probabilistic Concept Web on a Humanoid Robot
Çelikkanat, Hande; Orhan, Guner; Kalkan, Sinan (2015-06-01)
It is now widely accepted that concepts and conceptualization are key elements towards achieving cognition on a humanoid robot. An important problem on this path is the grounded representation of individual concepts and the relationships between them. In this article, we propose a probabilistic method based on Markov Random Fields to model a concept web on a humanoid robot where individual concepts and the relations between them are captured. In this web, each individual concept is represented using a proto...
A fluid dynamics framework for control of mobile robot networks
Paç, Muhammed Raşid; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2007)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Çelikkanat, “A Grounded and contextualized web of concepts on a humanoid robot,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.