Indoor localization and tracking based on RSSI and accelerometer measurements

Download
2015
Doğan, Melih
In this study, first, received signal strength (RSS) based indoor localization and tracking techniques including maximum likelihood estimation (MLE), Kalman Filter (KF), serial and parallel extended Kalman Filter (EKF) are investigated and their performances compared to each other via a simulation study. Later, sensor fusion with RSS and inertial measurement unit (IMU) for target tracking is discussed to improve accuracy of RSS-based tracking by using KF and EKF as fusion algorithms. Effects of channel parameters and IMU precision to tracking performance are analyzed. Derivations of Posterior Cramer-Rao Bounds for tracking are provided for ONLY RSS and RSS/IMU fusion scenarios with respect to different measurement variances. Finally, we establish a test-bed for RSS based localization and tracking by using Xbee S2 RF modules. ONLY RSS and RSS/IMU fusion scenarios are compared to each other experimentally. RSSI performance is also examined with respect to antenna orientation of Xbee S2 RF module.

Suggestions

On localization and tracking using received signal strength measurements /
Yılmaz, Alptekin; Yılmaz, Ali Özgür; Orguner, Umut; Department of Electrical and Electronics Engineering (2015)
In this study, first, some received signal strength (RSS) based localization techniques, including maximum likelihood estimation (MLE), multidimensional scaling (MDS) and weighted least squares (WLS), are investigated and compared to each other via a simulation study within the perspective of a collaborative localization scenario. MLE using RSS measurement model, called RSS-MLE is known in the literature to be significantly biased. An important observation of this work is that the aforementioned bias can be...
Dimension reduced robust beamforming for towed arrays
Topçu, Emre; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Adaptive beamforming methods are used to obtain higher signal to interference plus noise ratio at the array output. However, these methods are very sensitive to steering vector and covariance matrix estimation errors. To overcome this issue, robust methods are usually employed. On the other hand, implementation of these robust methods can be computationally expensive for arrays with large number of sensors. Reduced dimension techniques aim to lower the computational load of adaptive beamforming algorithms w...
Blind channel estimation in OFDM systems
Ayas, Mehmet Akif; Diker Yücel, Melek; Department of Electrical and Electronics Engineering (2015)
In this thesis, we have studied blind channel estimation methods for single-input-multiple-output (SIMO) orthogonal frequency division multiplexing (OFDM) systems in time and frequency domain, in which the cross relation between the channel gains and a single snapshot of the received signal on each subcarrier is utilized. We have performed blind channel estimation for uncorrelated and correlated Rayleigh fading channel pairs using time and frequency methods in OFDM systems with one-transmitting, two-receivi...
Application of F-test method on model order selection and related problems
Yazar, Alper; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Signal modeling is one of the important topics of signal processing area. The input signal should be modeled with a suitable mathematical model first. In statistics related disciplines, there are information theory based criteria for model order selection topic. In this thesis work, F-test based methods are proposed on model order selection and related problems. F-test is used in statistics related disciplines. However, it is not so widely used in signal processing related problems. Solution approaches for ...
Receiver design for a class of new pulse shapes for CPM signals
Uğurlu, Bilal; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2012)
Recently, a study on obtaining better Euclidean distance for CPM (Continuous Phase Modulation) signals that fit well-known GSM spectral envelope has been carried out, and significant performance improvements were obtained. Two new pulse shapes, which are represented using 8th degree polynomials, were optimized to give the best error performance under the constraint that the PSD stays below GSM spectral standards. However, the approach uses parameters that cause the number of states to increase considerably,...
Citation Formats
M. Doğan, “Indoor localization and tracking based on RSSI and accelerometer measurements,” M.S. - Master of Science, Middle East Technical University, 2015.