Indoor localization and tracking based on RSSI and accelerometer measurements

Download
2015
Doğan, Melih
In this study, first, received signal strength (RSS) based indoor localization and tracking techniques including maximum likelihood estimation (MLE), Kalman Filter (KF), serial and parallel extended Kalman Filter (EKF) are investigated and their performances compared to each other via a simulation study. Later, sensor fusion with RSS and inertial measurement unit (IMU) for target tracking is discussed to improve accuracy of RSS-based tracking by using KF and EKF as fusion algorithms. Effects of channel parameters and IMU precision to tracking performance are analyzed. Derivations of Posterior Cramer-Rao Bounds for tracking are provided for ONLY RSS and RSS/IMU fusion scenarios with respect to different measurement variances. Finally, we establish a test-bed for RSS based localization and tracking by using Xbee S2 RF modules. ONLY RSS and RSS/IMU fusion scenarios are compared to each other experimentally. RSSI performance is also examined with respect to antenna orientation of Xbee S2 RF module.

Suggestions

On localization and tracking using received signal strength measurements /
Yılmaz, Alptekin; Yılmaz, Ali Özgür; Orguner, Umut; Department of Electrical and Electronics Engineering (2015)
In this study, first, some received signal strength (RSS) based localization techniques, including maximum likelihood estimation (MLE), multidimensional scaling (MDS) and weighted least squares (WLS), are investigated and compared to each other via a simulation study within the perspective of a collaborative localization scenario. MLE using RSS measurement model, called RSS-MLE is known in the literature to be significantly biased. An important observation of this work is that the aforementioned bias can be...
Dimension reduced robust beamforming for towed arrays
Topçu, Emre; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Adaptive beamforming methods are used to obtain higher signal to interference plus noise ratio at the array output. However, these methods are very sensitive to steering vector and covariance matrix estimation errors. To overcome this issue, robust methods are usually employed. On the other hand, implementation of these robust methods can be computationally expensive for arrays with large number of sensors. Reduced dimension techniques aim to lower the computational load of adaptive beamforming algorithms w...
GPS-Based Real-Time Orbit Determination of Low Earth Orbit Satellites Using Robust Unscented Kalman Filter
Karslıoğlu, Mahmut Onur; Erdogan, Eren; Pamuk, Onur (2017-11-01)
In this research, a novel algorithm for real-time orbit determination (RTOD) is presented using the robust unscented Kalman filter (RUKF) with global positioning system (GPS) group and phase ionospheric correction (GRAPHIC) observables. To increase the reliability of the solution, a robust approach is included in the UKF to cope with the bad, invalid, or degraded measurements leading to the divergence or inaccurate output of the filter. Robustness is provided by making the filter less sensitive to faulty me...
Receiver design for a class of new pulse shapes for CPM signals
Uğurlu, Bilal; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2012)
Recently, a study on obtaining better Euclidean distance for CPM (Continuous Phase Modulation) signals that fit well-known GSM spectral envelope has been carried out, and significant performance improvements were obtained. Two new pulse shapes, which are represented using 8th degree polynomials, were optimized to give the best error performance under the constraint that the PSD stays below GSM spectral standards. However, the approach uses parameters that cause the number of states to increase considerably,...
Nonuform pulse repetition interval optimization for pulse doppler radars
Mercan, Hasan; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2004)
In this thesis, a method of optimization of nonuniform pulse repetition interval for pulse Doppler radars is investigated. PRI jittering technique is used for the selection of inter-pulse intervals. An environment with white Gaussian noise and clutter interference is defined and applying generalized likelihood ratio test, a sufficient statistic function for the detection of the target is derived. The effect of jitter set selection on range and Doppler ambiguity resolution and clutter rejection is investigat...
Citation Formats
M. Doğan, “Indoor localization and tracking based on RSSI and accelerometer measurements,” M.S. - Master of Science, Middle East Technical University, 2015.