Dimension reduced robust beamforming for towed arrays

Download
2015
Topçu, Emre
Adaptive beamforming methods are used to obtain higher signal to interference plus noise ratio at the array output. However, these methods are very sensitive to steering vector and covariance matrix estimation errors. To overcome this issue, robust methods are usually employed. On the other hand, implementation of these robust methods can be computationally expensive for arrays with large number of sensors. Reduced dimension techniques aim to lower the computational load of adaptive beamforming algorithms with a minor loss of performance. In this thesis, the reduced dimension method is combined with the robust adaptive beamforming technique in order to obtain a rapidly converging, low complexity beamformer which is robust against the steering vector mismatches and small number of training snapshots. Moreover, a dimension reduction matrix that suppresses the known interferences such as the main-ship noise for towed arrays is designed to enhance the performance of the reduced dimension beamformer. The performance of the developed technique is illustrated by using both the simulated data (generated for different types of steering vector mismatches) and the field data obtained by a towed array in actual sea trials.

Suggestions

An Investigation on belief propagation decoding of polar codes
Doğan, Orkun; Diker Yücel, Melek; Department of Electrical and Electronics Engineering (2015)
Polar codes are provably symmetric capacity achieving codes for any given binary input discrete memoryless channel, with low encoding and decoding complexities. Polar codes introduced by Erdal Arıkan in 2009 are based on the channel polarization. N binary channels are synthesized out of N copies of binary input discrete memoryless channels, such that as N goes to infinity each of the synthesized channel’s capacity goes to either 0 or 1; i.e., the channels are seen purely as noisy or noiseless channels. Thes...
Properly Handling Complex Differentiation in Optimization and Approximation Problems
Candan, Çağatay (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
Functions of complex variables arise frequently in the formulation of signal processing problems. The basic calculus rules on differentiation and integration for functions of complex variables resemble, but are not identical to, the rules of their real variable counterparts. On the contrary, the standard calculus rules on differentiation, integration, series expansion, and so on are the special cases of the complex analysis with the restriction of the complex variable to the real line. The goal of this lect...
Application of F-test method on model order selection and related problems
Yazar, Alper; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Signal modeling is one of the important topics of signal processing area. The input signal should be modeled with a suitable mathematical model first. In statistics related disciplines, there are information theory based criteria for model order selection topic. In this thesis work, F-test based methods are proposed on model order selection and related problems. F-test is used in statistics related disciplines. However, it is not so widely used in signal processing related problems. Solution approaches for ...
Steady-state modeling of a phase-shift PWM parallel resonant converter
Iskender, Ires; Uctug, Yildurum; Ertan, Hulusi Bülent (2006-01-01)
Purpose - To derive an analytical model for a dc-ac-dc parallel resonant converter operating in lagging power factor mode based on the steady-state operation conditions and considering the effects of a high-frequency transformer.
Design and Analysis of Frequency-Tunable Amplifiers using Varactor Diode Topologies
Nesimoglu, Tayfun (Springer Science and Business Media LLC, 2011-08-01)
The design of frequency-tunable amplifiers is investigated and the trade-off between linearity, efficiency and tunability is revealed. Several tunable amplifiers using various varactor diode topologies as tunable devices are designed by using load-pull techniques and their performances are compared. The amplifier using anti-series distortion-free varactor stack topology achieves 38% power added efficiency and it may be tuned from 1.74 to 2.36 GHz (about 35% tunable range). The amplifier using anti-series/an...
Citation Formats
E. Topçu, “Dimension reduced robust beamforming for towed arrays,” M.S. - Master of Science, Middle East Technical University, 2015.