Influence of surface treatment of fillers on the mechanical properties of thermoplastic polyurethane composites

Download
2015
Tayfun, Ümit
The incompatibility between filler and polymer matrix is the major restriction for the production of composites to have desirable properties. Several surface modification methods are applied to filler surface in order to improve the interfacial adhesion with polymer matrix. Easy processablity and fully recyclability character of thermoplastic polyurethane (TPU) make it cost effective for many applications. Majority of TPU application is across a range of markets including automotive, sporting goods, medical devices, tubes, hoses, wires and cables. The objectives of this research are the enhancement of interfacial interactions between several fillers and TPU matrix by applying surface treatments and investigation the effects of these treatments on the mechanical properties of TPU based composites. The surface of fillers after modifications were characterized with fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). Pristine and surface functionalized fillers were incorporated in TPU matrix by using melt-blending method. Two types of TPU composites, green polymer composites and carbonaceous fillers reinforced composites were prepared. Mechanical properties, melt flow characteristics and morphologies of the composites were evaluated by using tensile, dynamic mechanical analysis (DMA) and Shore hardness tests, melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. Surface modifications of fillers resulted in better mechanical properties for their composites as compared with untreated ones. SEM micrographs revealed that surface treated reinforcers dispersed more homogeneously than untreated fillers in the TPU matrix. Results confirmed that surface modifications improved the adhesion of fillers to TPU.

Suggestions

Influence of the electrode size and location on the performance of a CMUT
Bayram, Barış; Ergun, AS; Khuri-Yakub, BT (2001-01-01)
The collapse voltage of micromachined capacitive ultrasonic transducers (CMUT) depends on the size, thickness, type, and position of the metal electrode within the membrane. This paper reports the result of a finite element study of this effect. The program (ANSYS 5.7) is used to model a circular membrane on top of a Si substrate covered by a Si3N4 insulation layer. We find that the collapse voltage increases in proportion to the metal thickness for constant membrane thickness. The collapse voltage of a mem...
Impact of Casimir Force in Molecular Electronic Switching Junctions
Katzenmeyer, Aaron; Logeeswaran, V. J.; Tekin, Bayram; Islam, M. Saif (2008-03-27)
Despite significant progress In synthesizing several new molecules and many promising single device demonstrations, wide range acceptance of molecular electronics as an alternative to CMOS technology has been stalled not only by controversial theories of a molecular device's operation, for example the switching mechanism, but also by our inability to reproducibly fabricate large arrays of devices. In this paper, we investigate the role of Casimir force as one of the potential source of a wide range of discr...
Electroluminescence properties of a PIN structure made by nearly stoichiometric a-SiCx:H active layer
SEL, KIVANÇ; Akaoglu, Baris; ÖZDEMİR, Orhan; Atilgan, Ismail (Elsevier BV, 2009-01-01)
a-SiCx:H PIN diode has been fabricated within a single pump-down process under the same deposition conditions used for doped and undoped PECVD grown thin films, whose optical and electrical properties are determined and compared with a-Si:H. Current-voltage characteristics of PIN diode are evaluated and concluded to be limited by tunnelling of holes at p-i interface into valence band tail states. Electroluminescence measurements revealed radiative monomolecular recombinations. Deconvolution of the luminesce...
Assessing effects of (3-aminopropyl) trimethoxysilane self-assembled layers on surface characteristics of organosilane-grafted moisture-crosslinked polyethylene substrate: A comparative study between chemical vapor deposition and plasma-facilitated in situ grafting methods
Sarkari, Navid Mostofi; Doğan, Öznur; Bat, Erhan; Mohseni, Mohsen; Ebrahimi, Morteza (Elsevier BV, 2019-12-15)
Silane coupling agents can act as bonding intermediates at the interface of two dissimilar materials by altering surface properties. In this study, (3-aminopropyl) trimethoxysilane (APTMS) was used as a silane precursor for vapor-phase deposition on organosilane-grafted moisture-crosslinked polyethylene (Si-XLPE) substrate. Chemical vapor deposition (CVD) and plasma-facilitated in situ grafting methods (grafting-from and grafting-onto) were employed to graft APTMS, and the consequent effects on surface of S...
Combined effects of ALS and SLS on Al2O3 reinforced composite nickel coatings
Yılmaz, Olgun; Karakaya, I. (Informa UK Limited, 2020-05-03)
The mechanical and tribological properties of electrochemical coatings can be enhanced by the embedded second phase particles to nickel matrix. Two different anionic surfactants sodium dodecyl sulfate and ammonium lignosulfonate were used together to adjust the wetting conditions and provide the suspension of Al2O3 particles in a nickel sulfamate electrolyte in this study. The effects of current density and amounts of the two surfactants on wear rate, coefficient of friction, and hardness were studied. It w...
Citation Formats
Ü. Tayfun, “Influence of surface treatment of fillers on the mechanical properties of thermoplastic polyurethane composites,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.