Three dimensional reacting flow analysis of a cavity-based scramjet combustor

Rouzbar, Ramin
Scramjet engines have become one of the main interest areas of the supersonic propulsion systems. Scramjets are rather a new technology and they possess unsolved issues and problems regarding their operation, especially in the combustion process. Combustion at high speeds cause various problems as flame instability and poor fuel-air mixing efficiency. One of the methods used to overcome these problems is to recess cavity in the combustor wall where secondary flow is generated. In this study, a CFD tool is developed to analyze the reacting flow passing through the cavity-based scramjet combustor. Developed CFD code is based on three dimensional coupled Navier-Stokes and finite rate chemistry equations. Ethylene-air reduced chemical reaction model is used as fuel-air combination. Non-dimensionalized governing equations are discretized by Finite Volume Method (FVM) and Newton GMRES method is used to solve the coupled system of equations. First and second order schemes are investigated with different flux vector splitting methods. Moreover, flux limiters are implemented to improve the convergence of the second order schemes. It is found that second order schemes and Van Leer flux vector splitting methods are more accurate. In order to remove the dependency of the solutions on grid resolution, mesh refinement is done. In addition, effect of various fuel injection angles and injector locations on the efficiency of the combustor are investigated. It is found that 90 degree fuel injection angle gives the best mixing efficiency while addition of downstream injectors do not contribute to the overall efficiency. To sum up, the fundamental aim of this study is to analyze the reacting flow through the scramjet combustor efficiently and also examine new methods to improve the performance of the combustor.


Parametric investigation of hull shaped fuselage for amphibious UAV
Sazak, Emre; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2017)
Performance of amphibious unmanned aerial vehicles (UAV’s) that take off from and land on water, like seaplanes, greatly depend on hydrodynamic effects as well as aerodynamic effects, therefore their geometries need to be optimized for both. This study mainly investigates the effect of geometric parameters of a generic, hull-shaped fuselage that are constrained by hydrodynamic drivers, such as the step height needed to reduce hydrodynamic drag, sternpost angle and deadrise angle needed for safe landing; on ...
Effect of wing heating on flow structure of low swept delta wing
Şencan, Gizem; Yavuz, Mehmet Metin; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2016)
Micro Air Vehicles (MAVs), Unmanned Air Vehicles (UAVs) and Unmanned Combat Air Vehicles (UCAVs), which can be represented by simplified planforms including low swept delta wings, have many advantages in defense industry and aeronautical field. Thus, the aerodynamics of nonslender delta wings including development and application of different flow control techniques have been of considerable interest in recent years. In this study, it is aimed to investigate the effect of heating on the flow structure over...
Experimental and numerical inestigation of an s-duct diffuser designed for a micro turbojet engine powered aircraft
Aslan, Samet; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2016)
S-duct diffusers are often used for aircraft propulsion systems that convey the intake air to the engine compressor. In this thesis, flow structure at separated entrance conditions in an S-duct diffuser that designed for a micro turbojet engine powered aircraft is investigated using experimental and numerical methods. Flow characteristics such as flow separation, secondary flows, and swirl are investigated to find out the source of distortions and pressure loss at aerodynamics interface plane. Experiments a...
Effect of thickness-to-chord ratio on flow structure of a low swept delta wing
Gülsaçan, Burak; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Low swept delta wings, which are the simplified planforms of Unmanned Air Vehicles (UAVs), Unmanned Combat Air Vehicles (UCAVs) and Micro Air Vehicles (MAVs), have drawn considerable attention in recent years. In order to characterize and improve the operational parameters of these vehicles, the flow physics over low swept delta wings and its control should be well understood. In literature, the effect of thickness-to-chord ratio (t/C) on aerodynamic performance of a delta wing was studied on high and moder...
Development and implementation of novel flow control techniques for nonslender delta wings
Çelik, Alper; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Understanding and controlling the physical phenomenon behind the aerodynamics of low to moderate swept delta wings has been a challenge for researchers during the last few decades, which is stimulated by their widespread use in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs). Although delta wings are capable of generating high lift and stable flight performance at high angle of attack, the problems related to lack of conventional flow control surfaces compel the researchers to explore new...
Citation Formats
R. Rouzbar, “Three dimensional reacting flow analysis of a cavity-based scramjet combustor,” M.S. - Master of Science, Middle East Technical University, 2016.