Parametric investigation of hull shaped fuselage for an amphibious UAV

2016-07-15
Performance of amphibious UAV’s (Unmanned Aerial Vehicles) that take off from and land on water, like seaplanes, greatly depend on hydrodynamic effects as well as aerodynamic effects, therefore their geometries need to be optimized. This study mainly investigates the effect of geometric parameters of a generic, hull-shaped fuselage that are constrained by hydrodynamic drivers, such as the step height needed to reduce hydrodynamic drag, and deadrise and sternpost angles needed for safe landing, on aerodynamic drag of the fuselage under cruise conditions by means of the commercial CFD code ANSYS Fluent. Study includes a comparison of the experimental [1] and numerical results obtained at angles of attack varying between 8° to 16° and with Spalart-Allmaras, k-ω and k-ε turbulence models.
Ninth International Conference on Computational Fluid Dynamics (ICCFD9), 2016

Suggestions

Parametric investigation of hull shaped fuselage for amphibious UAV
Sazak, Emre; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2017)
Performance of amphibious unmanned aerial vehicles (UAV’s) that take off from and land on water, like seaplanes, greatly depend on hydrodynamic effects as well as aerodynamic effects, therefore their geometries need to be optimized for both. This study mainly investigates the effect of geometric parameters of a generic, hull-shaped fuselage that are constrained by hydrodynamic drivers, such as the step height needed to reduce hydrodynamic drag, sternpost angle and deadrise angle needed for safe landing; on ...
Investigation of the flexible missile fins under aerothermal loadings
Özkökdemir, Emir; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2018)
Wings or fins on the body flying at the supersonic speed are subjected to the aerothermal loading. These loads are categorized into two main groups; aerodynamic pressure and aerodynamic heating. They affect the strength of wings. In this thesis study, a flexible NACA 65-009 wing of a missile flying at supersonic speed is investigated. It is studied to define the effect of the change in wing geometry by the external loads on the flow characteristics. The flow simulations are carried on Ansys Fluent that uses...
Optimization of aeroelastic flapping motion of thin airfoils in a biplane configuration for maximum thrust
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (2007-01-01)
An aeroelastic flapping motion of thin airfoils in a biplane configuration is optimized for maximum thrust. Airfoils are attached to swing arms by an elastic joint, which is model led by a torsional spring. A spring-mass system is employed for the aeroelastic coupling. The stiffness coefficient and the mass moment of inertia of the airfoil are optimized for maximum thrust. A gradient based optimization method is employed in a parallel computing environment. Unsteady, low speed flows are computed in parallel...
Three dimensional reacting flow analysis of a cavity-based scramjet combustor
Rouzbar, Ramin; Eyi, Sinan; Department of Aerospace Engineering (2016)
Scramjet engines have become one of the main interest areas of the supersonic propulsion systems. Scramjets are rather a new technology and they possess unsolved issues and problems regarding their operation, especially in the combustion process. Combustion at high speeds cause various problems as flame instability and poor fuel-air mixing efficiency. One of the methods used to overcome these problems is to recess cavity in the combustor wall where secondary flow is generated. In this study, a CFD tool is d...
Design of a grid fin aerodynamic control device for transonic flight regime
Dikbaş, Erdem; Sert, Cüneyt; Baran, Özgür Uğraş; Department of Mechanical Engineering (2015)
Grid fins is unconventional control devices and they are used for aerodynamic control of various types of missiles. Low hinge moment requirement and superior packaging possibilities make grid fins attractive when compared to conventional planar fins. However, design of grid fins is more involved when transonic flight regime is considered. The reason for this is high drag force encountered by the grid fin. The purpose of the thesis is to overcome this drawback and to define a proper design methodology for tr...
Citation Formats
E. Sazak and D. F. Kurtuluş, “Parametric investigation of hull shaped fuselage for an amphibious UAV,” presented at the Ninth International Conference on Computational Fluid Dynamics (ICCFD9), 2016, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86856.