Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and implementation of wireless sensor networks utilizing sector antennas
Download
index.pdf
Date
2016
Author
Bilgin, Yusuf Alper
Metadata
Show full item record
Item Usage Stats
216
views
99
downloads
Cite This
This thesis considers the medium access control layer (MAC) for a wireless sensor network (WSN) utilizing sector antennas. We propose a communication protocol including a neighbor discovery protocol, a routing protocol and a transmission protocol similar to ALOHA for WSNs operating with sector antennas. The main contribution to the literature is to compare the outcome of using sector antennas with using omnidirectional antennas in WSNs by both experimental studies and simulations. Experimental studies compare: - A network performing the proposed MAC protocol and utilizing sector antennas, - A network performing ALOHA and using omnidirectional antennas. On the other hand, in addition to the networks in the experimental studies, simulation studies include: - A network using omnidirectional antennas and utilizing Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) algorithm, - A network utilizing sector antennas which have 5 sectors with the proposed MAC protocol, - A network using 3 sector antennas and has 3 different Radio Frequency (RF) modules, each directing to the different sectors, in the sink node. Both the experimental studies and the simulation results are presented to demonstrate the advantages of sector antennas over omnidirectional antennas by examining packet delivery ratio and latency parameters as networks’ traffic loads are varied.
Subject Keywords
Antennas (Electronics).
,
Antenna arrays.
,
Wireless sensor nodes.
,
Wireless sensor networks.
URI
http://etd.lib.metu.edu.tr/upload/12619754/index.pdf
https://hdl.handle.net/11511/25437
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Rule-based in-network processing for event-driven applications in wireless sensor networks
Şanlı, Özgür; Yazıcı, Adnan; Körpeoğlu, İbrahim; Department of Computer Engineering (2011)
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a cont...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
Hasan, Mohammed Zaki; Al-Rizzo, Hussain; Al-Turjman, Fadi (2017-01-01)
The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time m...
Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2015-10-01)
Wireless sensor networks (WSNs) are ubiquitous in a wide range of applications requiring the monitoring of physical and environmental variables, such as target localization and identification. One of these applications is the sensing of ferromagnetic objects. In typical applications, the area to be monitored is typically large compared to the sensing radius of each magnetic sensor. On the other hand, the RF communication radii of WSN nodes are invariably larger than the sensing radii. This makes it economic...
Rule-Based In-Network Processing in Wireless Sensor Networks
Sanli, Ozgur; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (2009-07-10)
Wireless sensor networks are application-specific networks, and usually a new network design is required for a new application. In event-driven wireless sensor network applications, the sink node of the network is generally concerned with the higher level information describing the events happening in the network, not the raw sensor data of individual sensor nodes. As the communication is a costly operation in wireless sensor networks, it is important to process the raw data triggering the events inside the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. A. Bilgin, “Design and implementation of wireless sensor networks utilizing sector antennas,” M.S. - Master of Science, Middle East Technical University, 2016.