Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN
Date
2015-10-01
Author
Baghaee, Sajjad
GÜRBÜZ, SEVGİ ZÜBEYDE
Uysal, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Wireless sensor networks (WSNs) are ubiquitous in a wide range of applications requiring the monitoring of physical and environmental variables, such as target localization and identification. One of these applications is the sensing of ferromagnetic objects. In typical applications, the area to be monitored is typically large compared to the sensing radius of each magnetic sensor. On the other hand, the RF communication radii of WSN nodes are invariably larger than the sensing radii. This makes it economical and efficient to design and implement a sparse network in terms of sensor coverage, in which each point in the monitored area is likely to be covered by at most one sensor. This work aims at investigating the sensing potential and limitations (e.g. in terms of localization accuracy on the order of centimeters) of the Honeywell HMC 1002 2-axis magnetometer used in the context of a sparse magnetic WSN. The effect of environmental variations, such as temperature and power supply fluctuations, magnetic noise, and sensor sensitivity, on the target localization and identification performance of a magnetic WSN is examined based on experimental tests. Signal processing strategies that could enable an alternative to the typical "target present/absent" mode of using magnetic sensors, such as providing successive localization information in time, are discussed.
Subject Keywords
Magnetic sensors
,
Wireless sensor networks
,
Target localization
,
Target identification
URI
https://hdl.handle.net/11511/42857
Journal
IEICE TRANSACTIONS ON COMMUNICATIONS
DOI
https://doi.org/10.1587/transcom.e98.b.2022
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Application and Modeling of a Magnetic WSN for Target Localization
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2013-04-12)
The aim of this study is modeling ferromagnetic targets for localization and identification of such objects by a wireless sensor network (WSN). MICAz motes were used for setting up a wireless sensor network utilizing a centralized tree-based system. The detection and tracking of ferromagnetic objects is an important application of WSNs. This research focuses on analyzing the sensing limitations of magnetic sensors via tests conducted on small-scale targets which are moving within a 30 cm radius around the s...
Rule-based in-network processing for event-driven applications in wireless sensor networks
Şanlı, Özgür; Yazıcı, Adnan; Körpeoğlu, İbrahim; Department of Computer Engineering (2011)
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a cont...
An Adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
Deniz, Fatih; Yazıcı, Adnan; Bağcı, Hakkı; Department of Computer Engineering (2016)
Wireless sensor networks (WSNs) are being used in numerous fields, such as battlefield surveillance, environmental monitoring and traffic control. They are typically composed of large numbers of tiny sensor nodes with limited resources. Because of their limitations and because of the environments they are being used, there are problems unique to WSNs. Due to the error-prone nature of wireless communication, especially in harsh environments, fault-tolerance emerges as an important property in WSNs. Also, bec...
Design and implementation of wireless sensor networks utilizing sector antennas
Bilgin, Yusuf Alper; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2016)
This thesis considers the medium access control layer (MAC) for a wireless sensor network (WSN) utilizing sector antennas. We propose a communication protocol including a neighbor discovery protocol, a routing protocol and a transmission protocol similar to ALOHA for WSNs operating with sector antennas. The main contribution to the literature is to compare the outcome of using sector antennas with using omnidirectional antennas in WSNs by both experimental studies and simulations. Experimental studies compa...
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Baghaee, S. Z. GÜRBÜZ, and E. Uysal, “Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN,”
IEICE TRANSACTIONS ON COMMUNICATIONS
, pp. 2022–2032, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42857.