Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of unsteady models for flapping wings' controller design approach
Download
index.pdf
Date
2016
Author
Ormancı, Filiz
Metadata
Show full item record
Item Usage Stats
228
views
147
downloads
Cite This
Among a wide variety of micro air vehicles (MAV) due to their sizes, shapes, mechanisms and remoting technique; insect scaled flapping wing vehicles offer potential advantages like; higher agility for collision avoidance by rapid maneuvering compared to fixed wing MAVs, less noise compared to rotary wing MAVs, number of similar species in nature to imitate while modeling. Therefore, they are mainly in favor for defense applications. Main scope of the thesis is to develop an unsteady model capable of calculating aerodynamic forces and moments for insect flight. Additionally, the total forces and moments are calculated at the body center of mass by rigid body dynamics equations. By this way, during the motion of the wings, the instantaneous angle and angular acceleration of the flapping body is found. These values are used in control applications to stabilize the system. Body maneuvers are possible when right and left wings are moving with different input frequencies and amplitudes. Different cases of time dependent wing motions which are sweeping, heaving and pitching can be tested by the current analytical model. In this thesis, after analytical modelling, both a testing apparatus for analyzing only roll attitude and for analyzing all rotational body dynamics are designed. These wing systems can be used to test the model for real-time control applications.
Subject Keywords
Aerofoils.
,
Flaps (Airplanes).
,
Airplanes
,
Micro air vehicles.
,
Insects
,
Flight control.
URI
http://etd.lib.metu.edu.tr/upload/12619776/index.pdf
https://hdl.handle.net/11511/25457
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Control of flow structure on low swept delta wing using unsteady leading edge blowing
Çetin, Cenk; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2016)
There is an increasing interest in recent years in the aerodynamics of low swept delta wings, which can be originated from simplified planforms of Unmanned Air Vehicles (UAV), Unmanned Combat Air Vehicles (UCAV) and Micro Air Vehicles (MAV). In order to determine and to extend the operational boundaries of these vehicles with particular interest in delaying stall, complex flow structure of low swept wings and its control needs to be understood. Among different flow control strategies, blowing through differ...
Development and implementation of novel flow control techniques for nonslender delta wings
Çelik, Alper; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Understanding and controlling the physical phenomenon behind the aerodynamics of low to moderate swept delta wings has been a challenge for researchers during the last few decades, which is stimulated by their widespread use in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs). Although delta wings are capable of generating high lift and stable flight performance at high angle of attack, the problems related to lack of conventional flow control surfaces compel the researchers to explore new...
Effect of thickness-to-chord ratio on flow structure of a low swept delta wing
Gülsaçan, Burak; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Low swept delta wings, which are the simplified planforms of Unmanned Air Vehicles (UAVs), Unmanned Combat Air Vehicles (UCAVs) and Micro Air Vehicles (MAVs), have drawn considerable attention in recent years. In order to characterize and improve the operational parameters of these vehicles, the flow physics over low swept delta wings and its control should be well understood. In literature, the effect of thickness-to-chord ratio (t/C) on aerodynamic performance of a delta wing was studied on high and moder...
Winglet design and analysis for low altitude solar powered UAV
Gölcük, Ali İhsan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2016)
To improve the aerodynamic performance of aircraft, comprehensive studies have been carried out in different areas such as wing optimization, tail types and fuselage shape, etc… One of the most important factors affecting the aerodynamic performance of the aircraft is lift induced drag caused by wingtip vortices. Winglet is a device referred as a small, vertical and angled extension attached at aircraft wingtip. It is used to minimize strength of vortices and reduce the lift induced drag. Various types of w...
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Ormancı, “Development of unsteady models for flapping wings’ controller design approach,” M.S. - Master of Science, Middle East Technical University, 2016.