Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Date
2016-02-01
Author
Deng, Shuanghou
Perçin, Mustafa
van Oudheusden, Bas
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
302
views
0
downloads
Cite This
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the relevance of aeroelastic effects. Flow visualization around the flapping wing by means of planar particle image velocimetry (PIV) measurements revealed the formation, development, and shedding of the vortical structures by the wings during flapping motion, with particular emphasis on the clap-and-fling phase. Further stereoscopic PIV measurements performed in the wake showed a momentum surplus wake induced by the clap-and-fling, indicative of thrust generation. The vortical structures in the wake formed during instroke and outstroke were characterized using a three-dimensional wake reconstruction from the planar measurements.
Subject Keywords
Hovering insect flight
,
Reynolds-number
,
Lift
URI
https://hdl.handle.net/11511/41459
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/1.j054403
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Experimental investigation of the effects of tip-injection on the aerodynamic loads and wake characteristics of a model horizontal axis wind turbine rotor
Abdulrahim, Anas; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, tip injection is implemented on a model Horizontal Axis Wind Turbine (HAWT) rotor to investigate the power and thrust coefficient variations as well as the wake characteristics. The model wind turbine has a 0.95 m diameter 3-bladed rotor with non-linearly twisted and tapered blades that has NREL S826 profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the tips while the rotor is rotating. The experiments are perform...
Vortex Formation and Force Generation Mechanisms of the DelFly II in Hovering Flight
Tenaglia, A; Perçin, Mustafa; Van Oudheusden, Bas W.; Deng, Shuanghou; Remes, Bart (2014-08-12)
This paper addresses the unsteady aerodynamic mechanisms in the hovering flight of the DelFly II flapping-wing Micro Aerial Vehicle (MAV). Stereoscopic Particle Image Velocimetry (Stereo-PIV) were carried out around the wings at a high framing rate. Thrust-force was measured to investigate the relation between the vortex dynamics and the aerodynamic force generation. The results reveal that the Leading-Edge-Vortex (LEV), as well as the high flexibility of the wings, have a major effect on thrust generation....
Experimental investigation of tip anhedral effects on the aerodynamics of a model helicopter rotor in hover
Uluocak, Sinem; Perçin, Mustafa; Uzol, Oğuz (2021-06-01)
This study experimentally investigates the effects of tip anhedral on the rotor aerodynamic performance and the tip vortex characteristics in hovering flight. A five-bladed scaled helicopter rotor with blades that have either rectangular (baseline) or anhedral tip geometries was used as the experimental model. Thrust and torque measurements were performed at the tip Mach numbers (Mtip) of 0.3 and 0.4 at five different pitch angles. In addition, flow field measurements via phase-locked particle image velocim...
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Experimental Investigation of Viscous Flow Normal to NACA 0012 Airfoil at low Reynolds Numbers
Gunaydınoglu, Erkan; Kurtuluş, Dilek Funda (null; 2018-07-11)
The low Reynolds number aerodynamics at high angle of attack is crucial for the design of unmanned aerial vehicles and wind turbine blades. The current study aims to enhance the insight on the near wake of airfoils normal to free stream. The near wake structure on a NACA 0012 airfoil normal to free-stream is measured with particle image velocimetry in the range of Reynolds number 7000 to 20000. The velocity and vorticity fields of the wake structures are studied and further analysis with Proper Orthogonal D...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Deng, M. Perçin, and B. van Oudheusden, “Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements,”
AIAA JOURNAL
, pp. 588–602, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41459.