Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of an intelligent model prediction controller for autonomous helicopters
Download
index.pdf
Date
2016
Author
Kubali, Şevket Eser
Metadata
Show full item record
Item Usage Stats
189
views
157
downloads
Cite This
In this thesis, a new PID gain update law using linear least squares regression is introduced as an adaptive control method for autonomous helicopters. In addition, future prediction analyses are conducted for error dynamics of the closed loop system using recursive linear least squares regression. Combining these two concepts with classical PID controller, an intelligent PID controller is obtained. On the other hand, using PID controllers, a flight controller with three control loops is developed to demonstrate the capabilities of the new intelligent controller and PID controllers of second and third control loops of this flight controller are replaced by the newly developed intelligent controller. Thus, a new intelligent flight controller is acquired with model prediction and adaptation abilities. Several challenging maneuvers are carried out in virtual environment for the flight controller that has no adaptation ability and the new intelligent flight controller using the same initially stable PID gains to investigate the success of the new intelligent controller.
Subject Keywords
Helicopters
,
Mathematical optimization.
,
Autonomous vehicles.
,
Flying-machines.
URI
http://etd.lib.metu.edu.tr/upload/12619999/index.pdf
https://hdl.handle.net/11511/25656
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of an Intelligent Least Squares Based Linear Controller for Autonomous Helicopters
Kubali, Eser; Yavrucuk, İlkay (2016-06-10)
In this paper, a novel PID gain update law using linear least squares regression is introduced as an adaptive control method for autonomous helicopters. In addition, prediction analysis is conducted for error dynamics of the closed loop system using recursive linear least squares regression. Combining these two concepts with classical PID controller, an intelligent PID controller is obtained. A flight controller with three control loops is developed to demonstrate the capabilities of the controller. Finally...
A new likelihood approach to autonomous multiple model estimation
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper presents an autonomous multiple model (AMM) estimation algorithm for hybrid systems with sudden changes in their parameters. Estimates of Kalman filters (KFs) that are tuned and employed for different system modes are merged based on a newly defined likelihood function without any necessity for filter interaction. The proposed likelihood function is composed of two measures, the filter agility measure and the steady-state error measure. These measures are derived based on filter adaptation rules....
Implementation of Robot Formation Control and Navigation Using Real Time Panel Method
Merheb, Abdel Razzak; Atas, Yunus; Gazi, Veysel; Sezer Uzol, Nilay (null; 2010-10-22)
Optimization of Power Conversion Efficiency in Threshold Self-Compensated UHF Rectifiers With Charge Conservation Principle
Gharehbaghi, Kaveh; KOÇER, FATİH; Külah, Haluk (2017-09-01)
This paper presents a compact model for threshold self-compensated rectifiers that can be used to optimize circuit parameters early in the design phase instead of time-consuming transient simulations. A design procedure is presented for finding the optimum aspect ratio of transistors used in the converter and number of rectifying stages to achieve the maximum power conversion efficiency. In the presented analysis, the relation between the power conversion efficiency and the load current over the variation o...
Improving Computational Efficiency of Particle Swarm Optimization for Optimal Structural Design
Hasançebi, Oğuzhan (2013-06-01)
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), wh...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. E. Kubali, “Development of an intelligent model prediction controller for autonomous helicopters,” M.S. - Master of Science, Middle East Technical University, 2016.