Implementation of Robot Formation Control and Navigation Using Real Time Panel Method

Merheb, Abdel Razzak
Atas, Yunus
Gazi, Veysel
Sezer Uzol, Nilay


Experimental Study Of Robot Formation Control And Navigation Using Potential Functions And Panel Method
Merheb, Abdel Razzak; Atas, Yunus; Gazi, Veysel; Sezer Uzol, Nilay (2010-06-09)
In this paper an implementation of a collision free navigation algorithm for robot swarm based on the panel method is discussed. The well known panel method is used to solve the governing equations for inviscid incompressible potential flow around rigid objects with tangency boundary conditions, providing the robots with safe trajectories to the target. In addition, artificial potential functions are used to force the swarm to achieve a predefined geometrical shape. Experimental results are obtained using e...
Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods
Merheb, Abdel-Razzak; GAZİ, VEYSEL; Sezer Uzol, Nilay (2016-10-01)
This paper presents a practical swarm navigation algorithm based on potential functions and properties of inviscid incompressible flows. Panel methods are used to solve the flow equations around complex shaped obstacles and to generate the flowlines, which provide collision-free paths to the goal position. Safe swarm navigation is achieved by following the generated streamlines. Potential functions are used to achieve and maintain group cohesion or a geometric formation during navigation. The algorithm is i...
Parallel implementation of a gas-kinetic BGK method on unstructured grids for 3-D inviscid missile flows
Ilgaz, Murat; Tuncer, İsmail Hakkı (2009-10-12)
A 3-D gas-kinetic BGK method and its parallel solution algorithm are developed for the computation of inviscid missile flows on unstructured grids. Flow solutions over a supersonic missile are presented to validate the accuracy and robustness of the method. It is shown that the computation time, which is an important deficiency of gas-kinetic BGK methods, may significantly be reduced by performing computations in parallel. © 2009 Springer-Verlag Berlin Heidelberg.
Improving Computational Efficiency of Particle Swarm Optimization for Optimal Structural Design
Hasançebi, Oğuzhan (2013-06-01)
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), wh...
Investigation of tightly coupled arrays for wideband applications
Arda, Kaan; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2020-10)
This thesis aims to provide in depth research on tightly coupled dipole arrays to be used in ultrawideband apertures applications. First, operation principles of tightly coupled dipole arrays are investigated. Starting from the Wheeler’s current sheet aperture concept, some calculations on bandwidth and impedance concepts are conducted. B.A. Munk’s addition to the concept, use of capacitive elements between adjacent dipoles, are introduced. Array unit cell is modeled using equivalent circuit approach,...
Citation Formats
A. R. Merheb, Y. Atas, V. Gazi, and N. Sezer Uzol, “Implementation of Robot Formation Control and Navigation Using Real Time Panel Method,” presented at the International Conference on Intelligent Robots and Systems 2010, Taipei, Taiwan, 2010, Accessed: 00, 2021. [Online]. Available: