Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On products of blocks of consecutive integers
Download
index.pdf
Date
2016
Author
Yıldız, Burak
Metadata
Show full item record
Item Usage Stats
135
views
34
downloads
Cite This
In this thesis, an old conjecture of Erdös and Graham concerning integer squares obtained from products of disjoint blocks of consecutive integers is revisited. From arithmetic geometry point of view, the conjecture concerns the structure of integral points on certain projective hypersurfaces. These hypersurfaces are analyzed geometrically. The relation between the Erdös-Graham conjecture and some well-known conjectures in diophantine geometry and in number theory are explained. As for the computational aspect of the problem, an efficient algorithm for computer search is developed and in certain computationally challenging cases new numerical examples are obtained.
Subject Keywords
Number theory.
,
Polynomials.
,
Algebraic number theory.
,
Arithmetical algebraic geometry.
URI
http://etd.lib.metu.edu.tr/upload/12620171/index.pdf
https://hdl.handle.net/11511/25799
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
On multiplication in finite fields
Cenk, Murat; Özbudak, Ferruh (2010-04-01)
We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite ...
A generic identification theorem for L*-groups of finite Morley rank
Berkman, Ayse; Borovik, Alexandre V.; Burdges, Jeffrey; Cherfin, Gregory (Elsevier BV, 2008-01-01)
This paper provides a method for identifying "sufficiently rich" simple groups of finite Morley rank with simple algebraic groups over algebraically closed fields. Special attention is given to the even type case, and the paper contains a number of structural results about simple groups of finite Morley rank and even type.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yıldız, “On products of blocks of consecutive integers,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.