Pt/MWCNT and Pt/f-MWCNT Catalysts Preparation by Hydrogen Reduction and Impregnation Method: The Application to Methanol Oxidation Reaction

Download
2016
Zabara, Mohammed Ahmed M
In this thesis, multi-walled carbon nanotubes supported platinum nanoparticles (Pt/MWCNT) and functionalized multi-walled carbon nanotubes supported platinum nanoparticles (Pt/f-MWCNT) catalysts in different Pt percentages were prepared using impregnation method and hydrogen gas reduction. Firstly, multi-walled carbon nanotubes were functionalized using sonochemical method and characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and acid base back titration. Secondly, Pt/MWCNT and Pt/f-MWCNT were prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS). Their electrochemical properties and performance toward methanol oxidation reaction were examined by cyclic voltammetry (CV). FTIR and XPS studies showed the formation of carboxylic acid, carbonyl, and hydroxyl groups on the surface of f-MWCNT. XRD and TEM works indicated the formation of faced center cubic structure platinum nanoparticles for all catalysts and the average particle size of Pt nanoparticles were little larger for Pt/f-MWCNT (~3nm) than Pt/MWCNT (~2nm) when only the nanoparticles were considered. Agglomeration of Pt nanoparticles was detected for Pt/MWCNT, while narrow particle size distribution was noticed for Pt/f-MWCNT which specifies the positive effect of the functional groups on MWCNT. XPS data revealed three oxidation states of platinum, 0, +2 and +4, with a percentage of ~ 65, 20 and 15, respectively. CV analysis displayed that 14 wt% Pt/f-MWCNT has the highest performance toward methanol oxidation reaction, which is 4.8 times more than commercial E-TEK Pt/Vulcan XC72 catalyst, because it has the highest electrochemical surface area (72.30 m2/g), percent Pt utility (70.9%), and roughness factor (134.9) compared to other catalysts.

Suggestions

Carbon-supported PT nanoparticles prepared by new surfactants and different reducing agents for methanol oxidation reaction
Kalyoncu, Sevda; Gökağaç Arslan, Gülsün; Department of Chemistry (2015)
In this thesis, carbon supported platinum catalysts were synthesized to investigate the effect of reducing agent and surfactant on the performance of catalyst towards methanol oxidation reaction. For this purpose, the catalysts were prepared by using PtCl4 as a starting material, propylamine (a) and dipropylamine (b) as surfactant, and sodium borohydride (catalyst I) and formaldehyde (catalyst II) as reducing agent. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron ...
Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Turker, Lemi; Eroğlu, İnci; Erkey, Can (Elsevier BV, 2008-05-01)
Pt-based electrocatalysts were prepared on different carbon supports which are multiwall carbon nanotubes (MWCNTs), Vulcan XC 72R (VXR) and black pearl 2000 (BP2000) using a supercritical carbon dioxide (ScCO2) deposition technique. These catalysts were characterized by using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and cyclic voltammetry (CV). XRD and HRTEM results demonstrated that the ScCO2 deposition technique enables a high surface area metal phase to be deposit...
Electrochemical sensing of glucose using conjugated polymer/chitosan/mwcnt architecture
Özel, Hande; Toppare, Levent Kamil; Söylemez, Saniye; Department of Polymer Science and Technology (2018)
In this thesis an amperometric biosensor consisting of a conjugated polymer, chitosan and multi-walled carbon nanotubes constructed for the detection of glucose. Conjugated polymers have opened a new era for the development of biosensing platforms with their unique electronic properties, high stabilities and processabilities. They serve both as immobilization matrices for biorecognition elements and as transducers in biosensing devices. As an additional modification material, chitosan was participated in th...
Pd as a reduction promoter for TiO2: Oxygen and hydrogen transport at 2D and 3D Pd interfaces with TiO2 monitored by TPR, operando 1H NMR and CO oxidation studies
Yarar, Melis; Bouzani, Asmae; Üner, Deniz (2023-01-01)
Ambient temperature reduction of TiO2 surface was observed through hydrogen spillover from Pd nanoparticles with a hydrogen consumption stoichiometry of 1.4 H2:Pd up to ≤2 wt%Pd loading. This behavior was attributed to the formation of nanoparticles exhibiting 2D behavior for ≤2 wt%Pd loading. The 2D behavior of Pd nanoparticles were further confirmed from the relative abundance of metallic Pd in 3D, deduced from hydrogen stoichiometry of β-PdHx. EPR revealed oxygen vacancy formation, operando NMR revealed ...
CVD of boron and dichloroborane formation in a hot-wire fiber growth reactor
Sezgi, Naime Aslı; Dogu, T; Ozbelge, HO (2001-11-01)
Chemical vapor deposition (CVD) of boron by hydrogen reduction of BCl, on a hot tungsten substrate was investigated in a parallel flow reactor. Effect of substrate temperature (1100-1250 degreesC) on the relative rates of formation of BHCl2 and boron was observed by the on-line analysis of the reactor effluent stream composition using an FT-IR spectrophotometer. It was concluded that BHCl2 was majorly formed in the gas phase within the thermal boundary layer adjacent to the substrate with possible contribut...
Citation Formats
M. A. M. Zabara, “Pt/MWCNT and Pt/f-MWCNT Catalysts Preparation by Hydrogen Reduction and Impregnation Method: The Application to Methanol Oxidation Reaction,” M.S. - Master of Science, Middle East Technical University, 2016.