Development of rare earth-free negative electrode materials for NiMH batteries

Download
2016
Onur Şahin, Ezgi
Ni/MH battery negative electrodes normally make use of rare earth AB5 compounds. Development of rare earth-free negative electrode materials for Ni/MH batteries is desirable so as to lower the cost, and widen the availability. Although there are a number of alternatives, of these AB2 alloys are particularly attractive, as they offer better capacities than AB5. A major problem in this group of alloys is that they are difficult to activate, i.e. they require a large number of cycles before they could reach their full capacity. The present work concentrates on a Laves phase C14 AB2 alloy, (TiZr)(VNiMnCrSn)2, and aims to develop methods for their rapid activation. The study examines the methods in two groups. In one, the methods aim to increase the surface area of the powders and in the other the methods aim for surface modifications. Pristine alloy had zero initial capacity, which has increased to and saturated at 220 mAh/g after 14 cycles. So as to examine the effect of surface area on activation two methods were used; sieving and ball milling. AB2 powder was sieved into different particle sizes, namely d(0.5)=37.3, 62.7 and 82.5 μm. It was found that with coarse particles, the activation was relatively fast reaching a capacity of 245 mAh/g after 7-8 cycles. The fast activation of coarse particles was attributed to the ease of particle fragmentation which led to the generation of new fresh surfaces. Electrodes with fine powders (e.g. d(0.5) = 37.3 μm) activates later with a lower saturation capacity. The low saturation capacity was attributed to ineffective utilization of the active powder, i.e. a fraction of powders not in contact with the electrode. Ball milling was more effective in improving the activation behaviour of the alloy. Milling of powders leads initially to a decrease in particle size. But with prolonged milling the particles do agglomerate yielding particle sizes similar to the initial one. A saturation capacity of 330 mAh/g was obtained after 5-6 cycles, which is slightly above the expected capacity of the powder based on the PCI curve measured with gas phase storage. The saturation capacity was less with prolonged milling. For surface modifications, the main method used involved hot alkaline treatment. This included treating the AB2 powder in boiling 6M KOH solution for various periods of time before the electrode was prepared. KOH treatment was effective in all cases, as the electrode was fully active after 1-2 cycles. SEM examination of treated alloy has shown that KOH treatment results in the leaching of powders leaving behind a nickel rich surface layer. The saturation capacity has steadily increased with increased duration of the treatment reaching a maximum value of 390 mAh/g after 80 minute-treatment. This capacity is very much higher than the gas phase storage capacity of the alloy expected at 1 atm hydrogen pressure, i.e. 1.2 wt. % H corresponding to 320 mAh/g. This was attributed to the formation of rough surfaces generated by the treatment, as such surfaces could stabilize hydrogen bubbles whereby allowing an increase in local hydrogen evolution pressure. Another method under investigation in the current study was NiO coating of AB2 powders. For this purpose, using sol-gel approach pristine particles were coated with NiO which upon charging in the electrode would be reduced to Ni, thus aiming for the formation of Ni rich surfaces as in KOH treatment. Two routes were employed; one with the use NiCl2, and the other with the use of NiNO3. Of these, with details used in the present work, only the second route gave a capacity, but overall activation performance in all samples were poor. 

Suggestions

Hydrogen storage in magnesium based thin films
Akyıldız, Hasan; Öztürk, Tayfur; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2010)
A study was carried out for the production of Mg-based thin films which can absorb and desorb hydrogen near ambient conditions, with fast kinetics. For this purpose, two deposition units were constructed; one high vacuum (HV) and the other ultra high vacuum (UHV) deposition system. The HV system was based on a pyrex bell jar and had two independent evaporation sources. The unit was used to deposit films of Mg, Mg capped with Pd and Au-Pd as well as Mg-Cu both in co-deposited and multilayered form within a t...
Development of magnesium based negative electrode materials for nickel metal hydride batteries
Eyövge, Cavit; Öztürk, Tayfur; Department of Metallurgical and Materials Engineering (2017)
Negative electrode materials of the nickel metal hydride (NiMH) batteries generally based on AB5 or similar compounds that make use of rare earth elements. The high cost of these elements makes it necessary to look for other alternatives that are more readily available and of low cost. It is also desirable to aim for materials that would have discharge capacity higher than roughly 350 mAh/g, which is typical of AB5 compounds. Magnesium-based hydrogen storage alloys have attracted considerable attention as a...
Development of 500 W PEM fuel cell stack for portable power generators
DEVRİM, YILSER; Devrim, Huseyin; Eroğlu, İnci (2015-06-29)
Polymer Electrolyte Membrane Fuel Cell (PEMFC) portable power generators are gaining importance in emergency applications. In this study, an air-cooled PEMFC stack was designed and fabricated for net 500 W power output. Gas Diffusion Electrodes (GDE's) were manufactured by ultrasonic spray coating technique. Stack design was based on electrochemical data obtained at 0.60 V was 0.5 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 1...
Induction thermal plasma synthesis of Mg2Ni nanoparticles
Aktekin, Burak; ÇAKMAK, GÜLHAN; Öztürk, Tayfur (2014-06-15)
A study was carried out into possibility of thermal plasma synthesis of Mg2Ni nanoparticles. Both prealloyed powders and elemental powders were used as precursors in an inductively coupled thermal plasma incorporating two injection probes located axially in the reactor one from the top and the other from the bottom. The study has shown that the use of prealloyed Mg2Ni as precursor leads to its disintegration in the plasma condensing into separate phases and therefore was not suitable for the synthesis of Mg...
Direct synthesis of hydrogen storage alloys from their oxides
Tan, Serdar; Öztürk, Tayfur; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2011)
The aim of this study is the synthesis of hydrogen storage compounds by electrodeoxidation technique which offers an inexpensive and rapid route to synthesize compounds from oxide mixtures. Within the scope of this study, two hydrogen storage compounds, FeTi and Mg2Ni, are aimed to be produced by this technique. In the first part, effect of sintering conditions on synthesis of FeTi was studied. For this purpose, oxide pellets made out of Fe2O3-TiO2 powders were sintered at temperatures between 900 °C – 1300...
Citation Formats
E. Onur Şahin, “Development of rare earth-free negative electrode materials for NiMH batteries,” M.S. - Master of Science, Middle East Technical University, 2016.