Dual current injection-magnetic resonance electrical impedance tomography using spatial modulation of magnetization

Download
2016
Naji, Nashwan
Electrical conductivity of biological tissues provides valuable information on physiological and pathological state of tissues. This may provide conductivity imaging a great potential to have diagnostic applications in clinical field. Developing a method that is able to recognize conductivity variations inside human body has received a great attention over the last decades. Magnetic Resonance Electrical Impedance Tomography (MREIT) is an imaging modality that utilizes current injection during magnetic resonance imaging to visualize conductivity distributions. In conventional MREIT pulse sequence, current is injected once in each repetition time (TR), which makes scan time quite long. Reducing imaging time helps in avoiding motion artifacts and reducing patient discomfort. In addition, a shorter scan time facilitates improving Signal-to-Noise Ratio (SNR) by averaging, and obtaining 3D images. In this thesis, a novel MREIT pulse sequence is proposed to reduce scan time by injecting two current profiles in each TR. This pulse sequence utilizes Spatial Modulation of Magnetization (SPAMM) technique to make recovering magnetic flux information due to each injected current profile achievable. This concept is implemented in two different pulse sequences, Spin-Echo (SE) and Gradient-Echo (GE), and evaluated using simulation models and phantom experiments. The performance of the proposed method is investigated in SNR, minimum measurable current and T 2* relaxation effect. Obtained results demonstrated that the proposed method is able to collect data twice faster with retained resolution, in comparison with the conventional MREIT. 

Suggestions

Magnetic resonance electrical impedance tomography based on MRI-SPAMM
Sümser, Kemal; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2016)
Electrical conductivity of biological tissues differs among different kinds of tissues. Information about measured impedance of a tissue gives great deal of information about pathological state of the tissue and some biomedical applications requires this information. Magnetic Resonance Current Density Imaging (MRCDI) and Magnetic Resonance Electrical Impedance Tomography (MREIT) are two imaging modalities which investigates current and conductivity distribution inside objects by utilizing the magnetic flux ...
Magnetic resonance conductivity tensor imaging (MRCTİ) at 3 tesla
Sadighi, Mehdi; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2014)
Electrical conductivity of biological tissues changes with physiological and pathological state of tissue. Therefore, recognizing the changes of the conductivity distribution inside human body, provides unique information about the pathological conditions of internal organs which is not available from other imaging modalities. Magnetic Resonance Electrical Impedance Tomography (MREIT) is an imaging technique to reconstruct the isotropic conductivity distribution of the biological tissues. But most of the bi...
A Programmable current source for magnetic resonance current density imaging (MRCDI) at 3 tesla
Göksu, Cihan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2014)
Electrical properties of biological tissues are distinctive between various types of the tissues, and significantly related with the pathological conditions of the tissues. For instance, conductivity images can be used for tumor identification. Besides, current density distribution may provide useful information in research and development of electrical stimulation, electro-surgery, defibrillation, and cardiac pacing devices. Magnetic resonance current density imaging (MRCDI) and magnetic resonance electric...
Development of reconstruction algorithms for magnetic resonance-electrical impedance tomography and experimental realization
Birgül, Özlem; Eyüboğlu, Behçet Murat; İder, Y. Ziya; Department of Electrical and Electronics Engineering (2002)
The electrical properties of biological tissues differ among tissues and vary with physiological and pathological state of a solution of bioelectrical field problems. The aim of this study is to reconstruct conductivity images with higher resolution and better accuracy than existing conductivity imaging tech niques. In order to achieve our goal, we proposed a technique named as Mag netic Resonance-Electrical Impedance Tomography (MR-EIT). MR-EIT com bines peripheral voltage measurements of classical Electri...
Electrical impedance tomography using lorentz fields
Zengin, Reyhan; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2012)
In this thesis, a novel approach is proposed to image the electrical conductivity properties of biological tissues. This technique is based on electrical current induction using ultrasound together with and applied static magnetic field. Acoustic vibrations are generated via piezoelectric transducers located on the surface of a biological body. To simulate the new technique multiphysics solution is required which couples pressure and electromagnetic equations. The feasibility of the proposed approach is inv...
Citation Formats
N. Naji, “Dual current injection-magnetic resonance electrical impedance tomography using spatial modulation of magnetization,” M.S. - Master of Science, Middle East Technical University, 2016.