Numerical investigation of residual stresses, distortion and microstructure evolution in multi-pass welded steel components

2016
Garipova, Nuriya
Formation of residual stresses, distortion and microstructure evolution in multi-pass welding and surfacing welding on pipeline HSLA steels were numerically investigated. A procedure for three-dimensional finite element analysis of temperature field, stress-strain state and phase changes in weldments was developed by using ESI SYSWELD & VISUAL WELD software. Numerical results were verified by comparisons with the results of various tests and measurements, such as molten pool profile calibration, microstructure investigation, hardness measurement, residual stress measurement by XRD. Influences of the subsequent weld passes, the interpass temperature, and the unclamping temperature on the residual stress state were investigated. Subsequent weld passes accomplish partial PWHT on the previous weld passes. Higher interpass temperature decreases residual stresses, but shows greater effect on distortion. Besides, the effects of weld pass sequence and welding direction in surfacing welding were studied for three different cases. It was observed that the most uneven weld deposition mode results in more uniform residual stress field and deformation. 

Suggestions

Numerical and Experimental Determination of the Residual Stress State in Multipass Welded API 5L X70 Plates
Garipova, Nuriya; Batıgün, Caner; Gür, Cemil Hakan (2014-01-01)
Residual stress distributions in multipass welded API 5L X70 steel plates were determined by numerical and experimental methods. SYSWELD finite element software was used for numerical simulations. Microstructure variations were also considered for calculation of residual stresses. The continuous cooling transformation diagram was obtained via JMatPro software. The results showed that residual stress distribution is sensitive to number of weld passes, and microstructure changes. The simulation results were c...
Numerical analysis of thermo-mechanical behavior in flow forming
Günay, Enes; Fenercioglu, Tevfik Ozan; Yalçınkaya, Tuncay (2021-01-01)
Flow forming is a metal forming process for cylindrical workpieces where high velocity deformation leads to radial thinning and axial extension. In the current study, a thermomechanical, dynamic and explicit finite element model of a flow forming process is developed on ABAQUS software. The model is validated through the comparison of reaction forces and geometry obtained from the experiments. Coolant convection effect is analyzed in conjunction with roller and mandrel conduction cooling to study the therma...
Non-destructive evaluation of residual stresses in the multi-pass steel weldments
Erian, Gökhan; Gür, Cemil Hakan; Batıgün, Caner; Department of Metallurgical and Materials Engineering (2012)
The purpose of this thesis is non-destructive determination of residual stress state in the multi-pass welded steel plates by Magnetic Barkhausen Noise (MBN) technique. To control the effectiveness of the developed procedure, continuous MBN measurements on the heat affected zone and parent metal of the welded plates were performed. In the experimental part, various steel plates were welded with different number of weld passes. Various series of samples were prepared for residual stress and for angular defle...
Numerical simulation of solidification kinetics in A356/SiCp composites for assessment of as-cast particle distribution
CETIN, Arda; Kalkanlı, Ali (Elsevier BV, 2009-06-01)
The present work is aimed at studying the effect of solidification rate on reinforcement clustering in particle reinforced metal matrix composites (PMMCs) through numerical simulations and experimental studies. A macrotransport-solidification kinetics (MTSK) model was used to simulate the solidification kinetics of the PMMCs. The experimental validation of the numerical model was achieved through the Newtonian and Fourier thermal analysis methods. Results reveal that the MTSK model can be successfully used ...
Computational elastodynamics of functionally graded thick-walled cylinders and annular coatings subjected to pressure shocks
Abeidi, Abdelrahim; Dağ, Serkan (2022-12-01)
A computational technique based on domain-boundary element method (D-BEM) is developed for elastodynamic analysis of functionally graded thick-walled cylinders and annular coatings subjected to pressure shock type of loadings. The formulation is built on the wave equation, which is derived in accordance with plane elastody-namics. Weighted residual statement for the wave equation is expressed by using the static fundamental solution as the weight function. Applying integration by parts and incorporating the...
Citation Formats
N. Garipova, “Numerical investigation of residual stresses, distortion and microstructure evolution in multi-pass welded steel components,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.