Numerical analysis of thermo-mechanical behavior in flow forming

2021-01-01
Günay, Enes
Fenercioglu, Tevfik Ozan
Yalçınkaya, Tuncay
Flow forming is a metal forming process for cylindrical workpieces where high velocity deformation leads to radial thinning and axial extension. In the current study, a thermomechanical, dynamic and explicit finite element model of a flow forming process is developed on ABAQUS software. The model is validated through the comparison of reaction forces and geometry obtained from the experiments. Coolant convection effect is analyzed in conjunction with roller and mandrel conduction cooling to study the thermal variations in the deformation zone during the process. The methodology detailed in this study facilitates a deeper understanding of the evolution of heat during the flow forming process and lays the groundwork for further exploration into the possible role of a material's thermal properties in the definition of flow formability.
2nd International Workshop on Plasticity, Damage and Fracture of Engineering Materials, IWPDF 2021

Suggestions

Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer; Department of Mechanical Engineering (2005)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method is applied to both rectangular and cylindrical coordinate systems, where rectangular coordinate system is used for comparison with results available in literature. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers tha...
Numerical investigation of residual stresses, distortion and microstructure evolution in multi-pass welded steel components
Garipova, Nuriya; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2016)
Formation of residual stresses, distortion and microstructure evolution in multi-pass welding and surfacing welding on pipeline HSLA steels were numerically investigated. A procedure for three-dimensional finite element analysis of temperature field, stress-strain state and phase changes in weldments was developed by using ESI SYSWELD & VISUAL WELD software. Numerical results were verified by comparisons with the results of various tests and measurements, such as molten pool profile calibration, microstruct...
Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder
Çelenligil, Mehmet Cevdet (2014-07-18)
Numerical simulations have been obtained for two-dimensional laminar flows past a circular cylinder in the transitional regime. Computations are performed using the direct simulation Monte Carlo method for Knudsen numbers of 0.02 and 0.2 and Mach numbers of 0.102 and 0.4. For these conditions, Reynolds number ranges from 0.626 to 24.63 and the flows are steady. Results show that separation occurs in the wake region for the flow with Mach number of 0.4 and Knudsen number of 0.02, but for the other eases flow...
Numerical and experimental analysis for comparison of square, cylindrical and plate fin arrays in external flow
İnci, Aykut Barış; Bayer, Özgür; Department of Mechanical Engineering (2018)
Geometrical optimization of square, cylindrical and plate fins for heat transfer augmentation is numerically performed in the external flow. Heat transfer performance of fins with different profiles are compared with same Reynolds number. The relation between the thermal characteristic of fins and boundary conditions like free-stream velocity and heat input are investigated. Experimental studies are performed using manufacturable fins to validate numerical model. Heat transfer correlations are derived in or...
Computational analysis of hydrodynamics of shear-thinning viscoelastic fluids in a square lid-driven cavity flow
YAPICI, KERİM; Uludağ, Yusuf (2013-11-01)
Computational results for steady laminar flow of three different shear thinning fluids lid-driven square cavity are presented. The viscoelastic nature of the fluids is represented by linear and exponential Phan-Thien Tanner (PTT) and Giesekus constitutive models. Computations are based on finite volume technique incorporating non-uniform collocated grids. The stress terms in the constitutive equations are approximated by higher-order and bounded scheme of Convergent and Universally Bounded Interpolation Sch...
Citation Formats
E. Günay, T. O. Fenercioglu, and T. Yalçınkaya, “Numerical analysis of thermo-mechanical behavior in flow forming,” Ankara, Türkiye, 2021, vol. 35, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124335918&origin=inward.