Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The Effect of nanosilica on the properties of pumice incorporated blended cement
Download
index.pdf
Date
2016
Author
Dündar, Burak
Metadata
Show full item record
Item Usage Stats
245
views
165
downloads
Cite This
Because of the high energy requirement and high CO2 amount as a waste of burned CaCO3 present in raw material, Portland Cement production is also responsible from the CO2 emission among other responsible industries. In order to reduce such an energy consumption, use of portland cement clinker is aimed to be reduced in construction industry. For this aim, use of materials called pozzolan has become widespread. Through the use of pozzolans, the amount of Portland Cement Clinker in structural concrete can be reduced. Mechanisms of pozzolan in mixtures are reaction of the pozzolan with the product of cement hydration and producing additional products that gives binding property to the paste. However, early age mechanical properties of the mixtures containing pozzolan are lower than that of the mixtures with no pozzolan. So, construction periods can be elongated because of the delays in form removal. In this research study, early age strength values and some physical/chemical properties of the portland cement, pozzolan, and nanomaterial mixtures at different ratios have been examined on both paste and mortar specimens. Nanosilica and pumice powder have been used as nanomaterial and pozzolan respectively. Early age compressive strength values of the mixtures containing nanosilica have been observed as higher than that of mixtures not containing nanosilica. It is observed that 3% of nanosilica addition increased the early age compressive strength of natural pozzolan blended cements.
Subject Keywords
Cement.
,
Silicates.
,
Pozzuolanas.
,
Portland cement.
,
Cement
URI
http://etd.lib.metu.edu.tr/upload/12620662/index.pdf
https://hdl.handle.net/11511/26202
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effect of combining different cement clinkers and slag with controlled finenesses on mortar strength and heat of hydration
Çelikkol Koçak, Tümay; Erdoğan, Sinan Turhan; Department of Civil Engineering (2013)
Portland cement production is an energy consuming activity. Increasing efficiency in concrete production is one of the ways of reducing energy consumption. To improve the efficiency of the properties of both materials and concrete system, reduction of undesired effects (loss of strength, decrease in lifetime, etc.) is important. The main purpose of this study is to combine different Portland cement clinkers and blast furnace slag with different fineness to obtain a cement with a controlled grading, in order...
A study on the early-strength improvement of slag cements
Akgün, Erdinç; Yaman, İsmail Özgür; Department of Cement Engineering (2009)
Use of alternative raw materials, especially industrial by-products, is necessary for a sustainable cement industry. By replacing clinker with industrial by-products, consumption of natural resources and energy is decreased. Therefore, both economical and environmentally friendly cements are produced. Several industrial by-products such as fly ash, silica fume, and slag, one of the most widely used industrial by-products, can be used to produce standard blended cements. Besides its many advantages, slag cem...
A study on blended bottom ash cements
Kaya, Ayşe İdil; Yaman, İsmail Özgür; Hoşten, Çetin; Department of Cement Engineering (2010)
Cement production which is one of the most energy intensive industries plays a significant role in emitting the greenhouse gases. Blended cement production by supplementary cementitious materials such as fly ash, ground granulated blast furnace slag and natural pozzolan is one of the smart approaches to decrease energy and ecology related concerns about the production. Fly ash has been used as a substance to produce blended cements for years, but bottom ash, its coarser counterpart, has not been utilized du...
Low-energy alinite cement production by using soda waste sludge
Uçal, Gültekin Ozan; Tokyay, Mustafa; Department of Civil Engineering (2016)
Increased environmental awareness and the concept of sustainable development have impacts on cement industry as on many other fields. Alinite cement which was developed in the 1970s may be an alternative inorganic, low energy binding material. In this study, synthesis and optimization of the properties of alinite cement was carried out by using soda waste sludge as a raw material. Soda waste sludge was mixed with limestone, clay, and iron ore in different proportions. All mixes were burned at 1050oC or 1150...
Comparison of the strength developments of interground and separately ground marble-incorporated cement mortars
Kava, İsmail Tolga; Erdoğan, Sinan Turhan; Hoşten, Çetin; Department of Cement Engineering (2013)
Production of Portland cement clinker contributes significantly to global warming and has a large environmental footprint. To reduce the amount of kiln-produced clinker in cement, the use of substitute natural or industrial waste materials has been gaining popularity. The use of CaCO 3- containing natural materials such as limestone and waste marble pieces has been increasing around the world, particularly after modifications made to cement production standards. Two types of marble-containing blended Portla...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Dündar, “The Effect of nanosilica on the properties of pumice incorporated blended cement,” M.S. - Master of Science, Middle East Technical University, 2016.