Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of spherical-rectangular printed antennas and antenna arrays using cavity model
Download
index.pdf
Date
2017
Author
Demir, Oğuz
Metadata
Show full item record
Item Usage Stats
235
views
102
downloads
Cite This
Printed antennas are commonly used since these antennas are preferred in many applications due to their advantageous properties. In order to employ these antennas in such applications, a thorough investigation and analysis are generally required. Although this can be implemented with fully numerical methods for the sake of high accuracy, the complex calculations required in the process lead to heavy computational load, hence generally demands high quality simulation software. In this thesis, the spherical-rectangular antennas mounted on a conducting sphere are analyzed by employing the cavity model as the basic analysis method, and the equivalent magnetic currents are derived. The radiation of equivalent currents in the presence of the conducting sphere is modeled by means of spherical wave harmonics, and their coefficients are obtained in the spectral domain. The approach is applied to both single element and array structures and resulting radiation patterns are examined and compared with commercial software simulations. In addition, vector rotation and coordinate mapping techniques are employed to extend the study to arrays consisting of elements with equal geometry and feeding.
Subject Keywords
Antenna arrays.
,
Antennas (Electronics).
,
Spherical harmonics.
URI
http://etd.lib.metu.edu.tr/upload/12620823/index.pdf
https://hdl.handle.net/11511/26334
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Theoretical investigation and design of wideband dielectric resonator antennas
Yüksel, Yılmaz Çağrı; Alatan, Lale; Department of Electrical and Electronics Engineering (2015)
The aim of this thesis is to utilize Dielectric Resonator Antennas (DRA) as array elements due to their advantages over other conventional antenna elements such as dipoles and microstrip patches. Depending on both the excitation mechanisms and the antenna shape, a Dielectric Resonator Antenna (DRA) provides its designer multiple independent degrees of freedom. In this thesis three antenna shapes, namely hemispherical, cylindrical and rectangular DRAs, are investigated. The cylindrical and the rectangular sh...
Design and implementation of VHF-UHF antenna with non-foster matching circuit
Aşcı, Cihan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2018)
Matching networks are widely used in the antenna transmitter and receiver applications and thus they are an essential part of the RF system. Conventional passive matching networks are very broadly used for matching an antenna for a narrow band of frequencies; however, achieving a broad bandwidth characteristics for electrically–small antennas (ESAs) is not possible with the use of passive matching circuits. ESAs possess a large input reactance and the electrical size of the antenna element is very small com...
An Investigation of beam scanning of arrays on cylindrical, conical and spherical surfaces
Takak, Yücel; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2015)
Recently, wide angle scanning antennas are often required especially in many radar applications. It is known that planar arrays have limited scan range without beam deformation. In this study design and production steps for wide angle scanning antenna arrays conformed on cylindrical, conical and spherical surfaces that operate at X-Band are investigated. Antenna elements used in these conformal arrays are designed using full wave electromagnetic solver tool HFSS. A MATLAB code for obtaining array patterns i...
Design of series-fed printed slot antenna arrays excited by microstrip lines
İncebacak, Mustafa; Alatan, Lale; Department of Electrical and Electronics Engineering (2010)
Series-fed printed slot antenna arrays excited by microstrip lines are low profile, easy to manufacture, low cost structures that found use in applications that doesn’t require high power levels with having advantage of easy integration with microwave front-end circuitry. In this thesis, design and analysis of microstrip line fed slot antenna arrays are investigated. First an equivalent circuit model that ignores mutual coupling effects between slots is studied. A 6-element array is designed by using this e...
Method of moments analysis of slotted waveguide antenna arrays
Altuntaş, Abdülkerim; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
Slotted waveguide antenna arrays are used extensively in many applications because of their high power handling capability, planarity, low loss and reduced profile. After the synthesis of such an array, the design should be verified by analyzing the array with an efficient simulation tool which is accurate, fast and flexible. Although FEM (Finite Element Method) based commercial softwares are very accurate and flexible, they are not sufficiently fast especially when it comes to optimization and fine tuning....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Demir, “Analysis of spherical-rectangular printed antennas and antenna arrays using cavity model,” M.S. - Master of Science, Middle East Technical University, 2017.