Numerical investigation of free surface and pipe flow problems by smoothed particle hydrodynamics

Dinçer, Ali Ersin
In the present study, a two-dimensional (2D) computer code for free surface and pipe flows is developed by using Smoothed Particle Hydrodynamics (SPH) approach. For free surface flow problem, idealized dam break problems are investigated numerically. The results of three recently published experimental studies are used to validate the numerical solutions. In addition to mesh-free particle method, SPH with a novel boundary treatment model proposed in the present study, mesh-based methods with turbulence and laminar modelling are used to simulate the dam break problem. It is confirmed that SPH can be used to predict the behavior of dam-break induced flows. In addition, the computational time of SPH decreases with the proposed boundary model which is seminal for fluid-structure interaction problems with SPH. Liquid slug flow driven by pressurized air in inclined and horizontal pipes with a downstream elbow is investigated numerically for the application of SPH in pipe flows. As the liquid slug hits the elbow, the impact pressure and the associated force generated at the elbow may damage pipe supports as well as the pipe itself. The slug arrival velocity and slug length (i.e. mass) at the elbow directly affect that pressure. In order to calculate these slug parameters just before the impact an improved one-dimensional (1D) model proposed in the literature is used. At the elbow, pressure variation with respect to time is calculated with SPH. The obtained numerical data are validated with previously published experimental results. For both short and long slugs, calculated peak pressures and pressure variations show great agreement with those of measured peak pressures and pressure variations.


Applications of a particle simulation approach
Kabakcı, İsmail; Çöker, Demirkan; Department of Aerospace Engineering (2019)
The thesis is intended to utilize a particle simulation approach, introduced for simple particles, for engineering problems in order to study and understand fluid behavior at molecular level. First, an improvement in force potential estimation is proposed for the original method, which offers notable accuracy increase in simulations in terms of determination of position and momentum trajectories. Afterwards, the improved method is applied to heat diffusion and unidirectional fluid flow simulations. Within t...
Modeling and numerical analysis of single droplet drying
Dalmaz, Nesip; Özbelge, H. Önder; Department of Chemical Engineering (2005)
A new single droplet drying model is developed that can be used as a part of computational modeling of a typical spray drier. It is aimed to describe the drying behavior of a single droplet both in constant and falling rate periods using receding evaporation front approach coupled with the utilization of heat and mass transfer equations. A special attention is addressed to develop two different numerical solution methods, namely the Variable Grid Network (VGN) algorithm for constant rate period and the Vari...
Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem
Koc, S; Song, JM; Chew, WC (Society for Industrial & Applied Mathematics (SIAM), 1999-04-29)
The numerical solution of wave scattering from large objects or from a large cluster of scatterers requires excessive computational resources and it becomes necessary to use approximate-but fast-methods such as the fast multipole method; however, since these methods are only approximate, it is important to have an estimate for the error introduced in such calculations. An analysis of the error for the fast multipole method is presented and estimates for truncation and numerical integration errors are obtain...
Marker-Based, 3-D Adaptive Cartesian Grid Method for Multiphase Flow around Irregular Geometries (Cart3DAdapt)
Uzgören, Eray(2016-2-07)
Computational simulations of multiphase flow are challenging because many practical applications require adequate resolution of not only interfacial physics associated with moving boundaries with possible topological changes, but also around three-dimensional, irregular solid geometries. This project focuses on the simulations of fluid/fluid dynamics around complex geometries, based on an Eulerian-Lagrangian framework. The approach envisions using two independent but related grid layouts to track the interf...
Numerical modeling of general compressible multi-phase flows
Kalpaklı, Bora; Tarman, Işık Hakan; Özyörük, Yusuf; Department of Engineering Sciences (2013)
In this thesis, some novel methods for solution of compressible, multi-phase flows on unstructured grids were developed. The developed methods are especially advantageous for interface problems, while they are also applicable to multi-phase flows containing mixtures as well as particle suspensions. The first method studied was a multi-dimensional, multi-phase Godunov method for compressible multi-phase flows. This method is based on the solution of a hyperbolic equation system for compressible multi-phase f...
Citation Formats
A. E. Dinçer, “Numerical investigation of free surface and pipe flow problems by smoothed particle hydrodynamics,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.