Numerical modeling of general compressible multi-phase flows

Kalpaklı, Bora
In this thesis, some novel methods for solution of compressible, multi-phase flows on unstructured grids were developed. The developed methods are especially advantageous for interface problems, while they are also applicable to multi-phase flows containing mixtures as well as particle suspensions. The first method studied was a multi-dimensional, multi-phase Godunov method for compressible multi-phase flows. This method is based on the solution of a hyperbolic equation system for compressible multi-phase flows. There are several difficulties with this hyperbolic equation system due to non-conservative volume fraction equation and non-conservative terms also known as throttling therms existing in momentum and energy equations. Robust and accurate multi-dimensional discretization of these terms were derived based on Abgrall \cite{Abgrall} criterion. Next a new method based on discrete equations for multi-dimensional and multiphase problems on unstructured grids was developed. This method resolves all the problems associated with the non-conservative equations and terms. The high artificial numerical mixing of phase interfaces associated with available compressible schemes was resolved with a novel volume fraction differencing scheme. The developed differencing scheme used for volume fraction is the only scheme providing comparable resolution of the interfaces with tracking methods on multi-dimensional unstructured grids and very robust compared to other interface capturing methods studied in the related literature. The resulting methods provide ignorable numerical mixing of phase interfaces on ustructured solution grids while giving physically correct results for pressure and energy in contrast to other methods available in the literature. In addition to these solution methods, some special boundary conditions and preconditioning methods for low speed steady flows were applied. For high spatial resolution, combinations of linear reconstruction and Weighted Average Flux (WAF) methods were also applied in some problems.


Incompressible flow simulations using least squares spectral element method on adaptively refined triangular grids
Akdağ, Osman; Sert, Cüneyt; Department of Mechanical Engineering (2012)
The main purpose of this study is to develop a flow solver that employs triangular grids to solve two-dimensional, viscous, laminar, steady, incompressible flows. The flow solver is based on Least Squares Spectral Element Method (LSSEM). It has p-type adaptive mesh refinement/coarsening capability and supports p-type nonconforming element interfaces. To validate the developed flow solver several benchmark problems are studied and successful results are obtained. The performances of two different triangular ...
Parallel Computation of 3-D Viscous Flows on Hybrid Grids
Ilgaz, Murat; Tuncer, İsmail Hakkı (2009-10-12)
In this study, a newly developed parallel finite-volume solver for 3-D viscous flows on hybrid grids is presented. The boundary layers in wall bounded viscous flows are discretized with hexahedral cells for improved accuracy and efficiency, while the rest of the domain is discretized by tetrahedral and pyramidal cells. The computations are performed in parallel in a computer cluster. The parallel solution algorithm with hybrid grids is based on domain decomposition which is obtained using the graph partitio...
Turbulent Combustion Modeling with Fully Coupled Fully Implicit Compressible Solver
Kalpakli, B.; Ozturkmen, M. O.; Akmandor, I. S. (2014-09-28)
The aim of this paper is to report on a recently developed fully coupled and fully implicit solver for turbulent combustion. All the equationsare written in terms of primitive variables (pressure, velocity, temperature, turbulent parameters and species mass fractions) and solved in a fully coupled manner. The coupled system of equations is solved using an unstructured collocated Finite Volume (FV) approach using a fully implicit temporal discretization. An all speed version of AUSM approach is used along wi...
Direct Calculation of Entropy Generation by Solving Reynolds-Averaged Entropy Transport Equation in an Air-Cooled Turbine Cascade
Orhan, Omer Emre; Uzol, Oğuz (2012-06-15)
This paper presents an implementation of directly solving Reynolds-Averaged Entropy Transport equation as a part of the CFD solution to predict entropy generation rates in a two-dimensional turbine blade stator section. The Reynolds Averaged Entropy Transport and the necessary modeling. equations are implemented to a commercial CFD solver as a User Defined Scalar (UDS). The results are compared with those obtained by post-processing the temperature and velocity fields obtained by solving full Navier-Stokes ...
Numerical simulation of advective Lotka-Volterra systems by discontinuous Galerkin method
Aktaş, Senem; Karasözen, Bülent; Uzunca, Murat; Department of Scientific Computing (2014)
In this thesis, we study numerically advection-diffusion-reaction equations arising from Lotka-Volterra models in river ecosystems characterized by unidirectional flow. We consider two and three species models which include competition, coexistence and extinction depending on the parameters. The one dimensional models are discretized by interior penalty discontinuous Galerkin model in space. For time discretization, fully implicit backward Euler method and semi-implicit IMEX-BDF methods are used. Numerical ...
Citation Formats
B. Kalpaklı, “Numerical modeling of general compressible multi-phase flows,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.