Alternative polyadenylation in a differentiation model: CACO-2

Beğik, Oğuzhan
Alternative polyadenylation (APA) is the selection of proximal or distal poly(A) signals on pre-mRNAs. APA has been implicated in many cellular processes, including differentiation. Resulting APA isoforms may have different stability or localization, which may eventually alter the protein function. Therefore, it is important to reveal APA isoforms to better understand post-transcriptional mechanisms in development. In this study, we aimed to investigate APA isoforms in an enterocyte differentiation model, Caco-2 cells. Enterocyte differentiation take place on the axis from colon crypt to villus to produce enterocytes from the intestinal stem cells. Caco-2 cells are derived from colon adenocarcinoma and are able to undergo spontaneous enterocyte differentiation upon confluency. Earlier, we have developed APADetect tool which uses microarray gene expression data to analyze APA events. We used APADetect in order to analyze the APA events in differentiating Caco2 cells. We identified 91 3’UTR lengthening and 43 3’UTR shortening events in differentiated Caco2 cells compared to proliferating Caco-2 cells. APA events were mostly enriched for biological processes such as enzyme binding, endocytosis and RNA processing. To begin investigating the functional significance of APA isoforms, we have looked into availability or loss of conserved miRNA binding sites on APA isoforms. Interestingly, we found an enrichment of miRNA binding sites close to the active poly(A) sites at the end of the mRNAs, which may allow easier access to miRNAs. Next, we began confirming the in silico results by real time RT-PCR (RT-qPCR) using proliferating and differentiated Caco-2 cells. Overall our approach serves as a platform for novel gene discovery in differentiation studies where conventional gene expression analysis may have overlooked 3’UTR isoforms.


The effect of valine substitution for glycine in the dimer interface of citrate synthase from Thermoplasma acidophilum on stability and activity
Kocabıyık, Semra (Elsevier BV, 2000-08-28)
To determine the role of hydrophobic interactions in the dimer interface of citrate synthase (CS) from Thermoplasma (Tp) acidophilum in thermostabilization, we have used site-directed mutagenesis to replace Gly 196 by Val on the helix L of the subunit interface. Recombinant wild-type and Gly 196 mutant TpCS enzymes were largely identical in terms of substrate specificities (K-m for oxaloacetate and acetyl CoA). However, the mutation not only reduced catalytic activity (about 10-fold) (i.e., V-max, K-cat and...
Mechanisms of mRNA polyadenylation
Agus, Hizlan Hincal; Erson Bensan, Ayşe Elif (The Scientific and Technological Research Council of Turkey, 2016-01-01)
mRNA 3'-end processing involves the addition of a poly(A) tail based on the recognition of the poly(A) signal and subsequent cleavage of the mRNA at the poly(A) site. Alternative polyadenylation (APA) is emerging as a novel mechanism of gene expression regulation in normal and in disease states. APA results from the recognition of less canonical proximal or distal poly(A) signals leading to changes in the 3' untranslated region (UTR) lengths and even in some cases changes in the coding sequence of the dista...
RanGTP induces an effector gradient of XCTK2 and importin alpha/beta for spindle microtubule cross-linking
Ems-McClung, Stephanie C.; Emch, Mackenzie; Zhang, Stephanie; Mahnoor, Serena; Weaver, Lesley N.; Walczak, Claire E. (Rockefeller University Press, 2020-02-03)
High RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin alpha/beta Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin alpha/beta form an effector gradient that is highest at the poles and diminishes toward the chromatin, which is opposite the RanGTP gradient. Importin alpha and beta preferentially inhibit XCTK2 antip...
The Effect of physical properties of the ELP-collagen based patterned surfaces on cell attachment and deformation
Antmen, Ezgi; Hasırcı, Vasıf Nejat; Demirci, Utkan; Department of Biology (2013)
Cell and substrate interactions are important in tissue engineering products especially on the behavior of the cells such as adhesion, migration, proliferation, and differentiation. These have been widely studied using substrates with different physical, chemical, and mechanical properties and form. In this study, elastin-like recombinamers (ELRs) were used blended with collagen or only collagen as the surface material. The ELR used in this study has Valine-Proline-Glycine-X-Glycine aminoacid sequences in i...
Intimate blending of binary polymer systems from their common cyclodextrin inclusion compounds
Uyar, Tamer; Rusa, Cristian C.; Wang, Xingwu; Rusa, Mariana; Hacaloğlu, Jale; Tonelli, Alan E. (2005-09-15)
A procedure for the formation of intimate blends of three binary polymer systems polycarbonate (PC)/poly(methyl methacrylate) (PMMA), PC/poly(vinyl acetate) (PVAc) and PMMA/PVAc is described. PC/PMMA, PC/PVAc, and PMMA/PVAc pairs were included in gamma-cyclodextrin (gamma-CD) channels and were then simultaneously coalesced from their common gamma-CD inclusion compounds (ICs) to obtain intimately mixed blends. The formation of ICs between polymer pairs and gamma-CD were confirmed by wide-angle X-ray diffract...
Citation Formats
O. Beğik, “Alternative polyadenylation in a differentiation model: CACO-2,” M.S. - Master of Science, Middle East Technical University, 2017.