Mixed mode fatigue crack growth path and life prediction under variable amplitude loading through extended finite element method

Download
2017
Dirik, Haydar
The main purpose of this study is to predict the crack growth path trajectories and fatigue crack growth (FCG) life under variable amplitude loading (VAL) by using Extended Finite Element Method (XFEM). For this purpose a computational algo- rithm is developed in Fortran which interacts with a commercial finite element soft- ware (Abaqus) and automatically propagates cracks which is initially modelled as stationary crack. Nasgro FCG equation is used for FCG life calculation which has a great accuracy among the FCG equations available in literature. Retardation effect due to VAL is taken into account by using appropriate retardation models according to nature of loading to show the capability of developed algorithm in covering the retardation phenomenon caused by overloads (OL) and underloads (UL). Developed algorithm is validated with several crack propagation tests available in literature in terms of crack growth path trajectories and FCG life under mode I and mixed mode loading conditions on different materials. Simulated and experimental results are in good harmony.

Suggestions

Fatigue crack growth analysis models for functionally graded materials
Dağ, Serkan; YILDIRIM, BORA (2006-10-18)
The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptica...
Technological characteristics of abrick masonry structure and their relationship with the structural behaviour /
Aktaş, Yasemin Didem; Türer, Ahmet; Department of Archaeometry (2006)
The aim of this study is to investigate the physical and mechanical properties of construction materials in relation with the structural behaviour of a historic structure. Within this framework, the brick masonry superstructure of Tahir ile Zuhre Mescidi, a XIIIth century Seljuk monument in Konya was selected as case study. The study started with the determination of the basic physical (bulk density, effective porosity, water absorption capacity), mechanical (modulus of elasticity, uniaxial compressive stre...
Fracture analysis of welded connections
Yetgin, Ali; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2013)
The main objective of this thesis is to evaluate structural integrity of a multi barrel launcher system on fracture mechanics basis by using finite element method. A global finite element model that includes necessary kinematic and elastic connections is built. Dynamic firing forces are applied on global finite element model and general structural response is obtained. Sub modeling method is used in order to perform crack analysis. Since size of global model is too large to include solid crack elements whic...
Computational Methods for Inclined Cracks in Orthotropic Functionally Graded Materials Under Thermal Stresses
Dağ, Serkan; TOPAL, SERRA (2013-10-03)
This article sets forth two different computational methods developed to evaluate fracture parameters for inclined cracks lying in orthotropic functionally graded materials, that are under the effect of thermal stresses. The first method is based on the J(k)-integral, whereas the second entails the use of the J(1)-integral and the asymptotic displacement fields. The procedures introduced are implemented by means of the finite element method and integrated into a general purpose finite element analysis softw...
Hygrothermal fracture analysis of fibrous composites with variable fiber spacing using JK-integral
Saeidi, Farid; Dağ, Serkan; Department of Mechanical Engineering (2013)
In this study, a Jk-integral based computational method will be developed to conduct fracture analysis of fibrous composite laminates that possess variable fiber spacing. This study will be carried out for the fibrous composites exposed to not only thermal but also hygroscopic boundary condition, which results hygrothermal load. Formulation of the Jk-integral will be carried out by using the constitutive relations of plane orthotropic hygrothermoelasticity. One of the most important challenges of this study...
Citation Formats
H. Dirik, “Mixed mode fatigue crack growth path and life prediction under variable amplitude loading through extended finite element method,” M.S. - Master of Science, Middle East Technical University, 2017.