Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Geometry-based modeling of dispersion in core-shell particle media
Download
index.pdf
Date
2017
Author
Hatipoğlu, Emre
Metadata
Show full item record
Item Usage Stats
199
views
71
downloads
Cite This
Dispersion is an important physical phenomenon that heavily influences performances of systems such as chromatographic separation processes. Mathematical modeling of this phenomenon is therefore widely investigated. This thesis study investigates dispersion of random-walking particles, or tracers, around core-shell particles, a type of recently commercialized spherical and porous stationary phase used in liquid chromatography that has a solid impermeable core that limits diffusion near the center and a porous shell covering the core. A random-walk approach was used for modelling the diffusion events, coupled with an external fluid velocity field to simulate convection and diffusion simultaneously. Impermeable boundaries of an unbound, without wall-effects, liquid chromatography column packed with core-shell particles were created using basic principles of analytical geometry, defining core-shell particles as a collection of a large core spheres and much smaller shell side spheres coated around the core based on actual microscopy images of core-shell particles. Reconstruction method was very similar to the actual production methods of these type of materials where a silica core sphere is coated by silica nanospheres to create a core-shell particle with a very homogeneous geometry. Analytically reconstructed geometry was visually inspected using CAD images and found to be appropriate. The core-shell particle geometry was then copied into a periodic random jammed packing of monodisperse hardspheres generated independently by a software and scaled in size such that core-shell particles would flush-fit inside the hardsphere that make the random packing. Random packing of hardspheres were also used as the system boundaries of fluid flow calculations. Assuming no flow would occur inside the pores of core-shell particles, velocity field of the fluid flow obtained by these calculations were used in couple with random-walk diffusion to simulate dispersion in the periodic random jammed packing of core-shell particles. Predictions of the dispersion model were quantized in terms of reduced plate height at different operating Peclet numbers and the results were compared with experimental data found in the literature. Predictions of the model compares very well with the experimental data with deviations clearly explainable by the differences between the simulated system and the experimental system. Therefore the analytical geometry based reconstruction method of the core-shell particles was successful and it can potentially pose an alternative to complicated imaging and image processing for similar system geometries. .
Subject Keywords
Dispersion.
,
Geometry, Analytic.
,
Chromatographic analysis.
URI
http://etd.lib.metu.edu.tr/upload/12621394/index.pdf
https://hdl.handle.net/11511/26696
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Spectroscopic intensities as measures of order parameter close to order-disorder transitions
Yurtseven, Hasan Hamit (Springer Science and Business Media LLC, 1988-01-01)
The infrared and Raman intensities can be related to the order parameter close to order-disorder phase transitions in crystal systems. In the present study this relationship has been obtained and compared with our experimental results for ammonium halides. Our predictions give satisfactory agreement with the observations in these crystals. It is proposed that the FTIR techniques can be appropriately used to evaluating the order parameter in various crystal systems.
Spherical harmonic-based random fields based on real particle 3D data: Improved numerical algorithm and quantitative comparison to real particles
Liu, X.; Garboczi, E. J.; Grigoriu, M.; Lu, Y.; Erdoğan, Sinan Turhan (2011-02-15)
The shape of particles often plays an important role in how they are used and in the properties of composite systems in which they are incorporated. When building models of systems that include real particles, it is often of interest to generate new, virtual particles whose 3D shape statistics are based on the 3D shape statistics of a collection of real particles. A previous paper showed mathematically how this can be carried out, but only had a small set of real particle shape data to use and only made a l...
Optical absorption of a quantum well with an adjustable asymmetry
Yildirim, H.; Tomak, Mehmet (Springer Science and Business Media LLC, 2006-04-01)
The effects of asymmetry and the electric field on the electronic subbands and the nonlinear intersubband optical absorption of GaAs quantum wells represented by a Poschl-Teller confining potential are studied. The potential itself can be made asymmetric through a correct choice of its parameter set and this adjustable asymmetry is important for optimizing the absorption. In that way optimal cases can be created. We calculate the modified wave functions and electronic subbands variationally. The linear and ...
Frequency-resolved spectroscopy of XB1323-619 using XMM-Newton data: detection of a reflection region in the disc
Balman, Şölen (Oxford University Press (OUP), 2010-09-21)
We present the frequency-resolved energy spectra (FRS) of the low-mass X-ray binary dipper XB1323-619 during persistent emission in four different frequency bands using an archival XMM-Newton observation. FRS method helps to probe the inner zones of an accretion disc. XB1323-619 is an Atoll source and a type-I burster. We find that the FRS is well described by a single blackbody component with kT in a range 1.0-1.4 keV responsible for the source variability in the frequency ranges of 0.002-0.04 and 0.07-0.3...
Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Hatipoğlu, “Geometry-based modeling of dispersion in core-shell particle media,” M.S. - Master of Science, Middle East Technical University, 2017.