Investigation of structural and electrochemical properties of biomass based activated carbon materials for energy storage applications

Download
2017
Köse, Kadir Özgün
Finding new energy sources and efficient ways for energy storage is one of the primary goals in both scientific and industrial research. To achieve this purpose, studies are concentrated on optimizing the characteristics of energy storage devices such as batteries, fuel cells and supercapacitors. Activated carbon (AC), beside its versatile application areas including wastewater and gas treatment, is used as electrodes in electrical double layer capacitors and as cathode in metal air batteries due to its high conductivity and high specific surface area (up to 3000 m2/g). In this thesis, AC is derived from biomass like pine cone, and its structural and electrochemical properties were characterized as an electrode material in supercapacitors. The porosity and conductivity of AC have a great influence on the electrochemical properties when used in EDLC applications; therefore, the production conditions of AC were arranged accordingly. As a result, surface area range of 1300 to 2700 m2/g was achieved. Furthermore, it is seen that electrical conductivity of AC is dependent on activation temperature with a 5 orders of magnitude greater value for high temperature treated ones. This dependence is linked to surface functional groups and structural order of the AC’s and they are characterized by FTIR and Raman spectroscopies. After the production and characterization of AC’s with various properties, they were used in the EDLC fabrication with two binders and two electrolytes. The effect of binders and electrolytes were investigated in EDLC performance; PSBR100 binder is found to be suitable for high power applications, whereas LA 132 binder is appropriate for high energy devices. The performance of TEA BF4 salt in acetonitrile was superior to TBA PF6 in acetonitrile. As a result, maximum power density of 72 kW/kg and energy density of 28 Wh/kg were achieved in EDLC’s fabricated.  

Suggestions

Development of organic-inorganic composite membranes for fuel cell applications
Erdener, Hülya; Baç, Nurcan; Department of Chemical Engineering (2007)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is t...
INVESTIGATION AND MODIFICATION OF HYDROKINETIC SAVONIUS TURBINE FOR LOW WATER SPEEDS
Ike-Offiah , Chiedozie Augustine; Orang, Ali Atashbar; Oğuz, Elif; Sustainable Environment and Energy Systems (2022-11)
With the ever-growing global interest in reducing greenhouse gases such as CO2, renewable energy options present a good energy alternative. Not only are they a sustainable option in their operational period, but they also have a low implementation cost especially, when compared to conventional fossil fuel sources. Hydrokinetic turbines have the advantages of energy predictability, relatively low visual impact, a high energy density, high capacity factor, and ease of manufacture, in addition to the low cost ...
Design, analysis and experimental verification of a piezoelectric vortex energy harvester
Avşar, Ahmet Levent; Şahin, Melin; Department of Aerospace Engineering (2016)
In recent days, alternative energy resources are discussed as an important topic for different applications, therefore an extensive study is conducted for the sustainable and renewable energy resources. The importance of the sustainable and renewable energy resources is also increased due to the fossil fuels usage and environmental pollution. For this reason, techniques for obtaining alternative energy resources, such as from sun and wind, are developed rapidly. Moreover, the energy loss during the operatio...
Steam Reforming of ethanol over sol-gel-synthesized mixed oxide catalysts
Olcay, Hakan Önder; Üner, Deniz; Department of Chemical Engineering (2005)
Depletion in the reserves of fossil fuels, inefficient energy production from these fuels and the negative effect of their usage on atmosphere, and thereby, on human health have accelerated researches on clean energy. Hydrogen produced from ethanol when used in fuel cells not only generates efficient energy but also creates a closed carbon cycle in nature. ZnO and Cu/ZnO catalysts are known with their superior performance in alcohol synthesis. From the principle of microkinetic reversibility they are expect...
Preliminary Study on Site Selection For Floating Hybrid Wind And Solar Energy Systems In Turkey
Yerlikaya, Nevzat Can; Çakan, Çağatay; Başara, Ilgın; Caceoğlu, Eray; Huvaj Sarıhan, Nejan (2021-09-08)
It is well-known that even though fossil fuels are the main energy resource in Turkey, use of sustainable energy resources such as wind and solar energy has been increasing in the past years and expected to continue on this trend in the next years to come. The suitable land for land-based wind turbines and photovoltaic (PV) systems could also be convenient for various other purposes, such as agriculture. This study aims to investigate the suitable sites for a combined floating wind and solar systems in the ...
Citation Formats
K. Ö. Köse, “Investigation of structural and electrochemical properties of biomass based activated carbon materials for energy storage applications,” M.S. - Master of Science, Middle East Technical University, 2017.