Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The Functional effects of AKR1B10 overexpression in colorectal cancer cell lines
Download
index.pdf
Date
2017
Author
Seza, Esin Gülce
Metadata
Show full item record
Item Usage Stats
240
views
94
downloads
Cite This
Aldo-keto reductases (AKRs) are nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) dependent oxidoreductases that are involved in many anabolic and catabolic reactions. When they are over-activated, the polyol pathway is activated that results in oxidative stress. AKRs are implicated in many inflammation-associated diseases including diabetes mellitus, asthma, uveitis, sepsis, atherosclerosis, periodontitis, and many cancers. AKR1B10, a member of the AKR family that is also known as small intestine like aldose reductase is highly expressed in the small intestine and colon. Analysis of publicly available microarray datasets indicated that colorectal cancer (CRC) patients showed lower AKR1B10 expression compared to normal tissues, although AKR1B10 was overexpressed in other cancers such as liver cancer. Gene set enrichment analyses indicated significant enrichment of metabolism related genes in tumors that expressed high amounts of AKR1B10. In order to understand the functional effects of AKR1B10, we overexpressed AKR1B10 in CRC cell lines that do not express the protein. We observed no alterations in cellular proliferation or cell cycle; however, cellular motility was reduced, along with a decrease in the nuclear translocation, DNA binding and transcriptional activity of NF-B, which is an important transcription factor that is necessary for cell survival and inflammation. The work carried out in this thesis suggests that the expression of AKR1B10 in colon cancer cells may not directly affect cancer progression by affecting cell proliferation or cell cycle; rather, the protein has a more indirect effect, perhaps through the activation of metabolism related pathways.
Subject Keywords
Cell lines.
,
Cancer cells.
,
Rectum
,
Colon (Anatomy)
URI
http://etd.lib.metu.edu.tr/upload/12621464/index.pdf
https://hdl.handle.net/11511/26732
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effects of the quercetin derivative CHNQ, a potent aldo- keto reductase inhibitor, on akr1b1 silenced HCT-116 colorectal cancer cells
Taşkoparan, Betül; Banerjee, Sreeparna; Department of Biology (2016)
Aldo-keto reductases (AKRs) are NAD(P)H dependent oxidoreductases that are known to be involved in the biosynthesis, metabolism and detoxification of a number of substrates including glucose. These enzymes are therefore implicated in the development of diabetic complications. Additionally, this family of enzymes, particularly AKR1B1, has been shown to be involved in pathology of inflammation- associated diseases such as atherosclerosis, asthma, uveitis, sepsis, arthritis, periodontitis and cancer, including...
Evaluation of functional changes in akr1b1 and akr1b10 overexpressing colorectal cancer cell lines
Güderer, İsmail; Banerjee, Sreeparna; Department of Biology (2021-2-15)
Aldo-keto reductases (AKRs) are nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enzymes with diverse cellular metabolism functions. AKR1B1 and AKR1B10 are two of the most studied enzymes in the AKR family. AKR1B1 reduces excess glucose into sorbitol using reducing electrons from NADPH, and the hyperactivation of the AKR1B1 pathways is associated with oxidative stress and cell death. AKR1B10 is a poor reductant of glucose but is a vital enzyme that can metabolize retinol and many other drugs an...
Investigation of SNX3 in colon cancer
Cingöz, Harun; Erson Bensan, Ayşe Elif; Department of Biology (2019)
Sorting Nexin 3 (SNX3) is part of the retromer complex that recycles cargo receptors back to plasma membrane or to Trans Golgi Network. WNT ligand carrier protein Wntless (WLS) is a known SNX3 cargo protein. Our earlier data suggested over expression of SNX3 in colon cancer cells. Considering its importance in receptor recycling, we hypothesized SNX3 to be a potential modulator of cancer related receptors. To begin understanding the role of SNX3, we developed RNAi models of SNX3 in SW480 colon cancer cells ...
Investigation of the effect of sodium butyrate on the regulation of cyclooxygenase-2 in colon cancer cell lines Caco-2 and HT-29
Ülgen, Doğukan Hazar; Banerjee, Sreeparna; Department of Biology (2015)
Sodium butyrate (NaBt) is a four-carbon short-chain fatty acid histone deacetylase inhibitor (HDACi) that is available in the colon through the commensal microbiota-mediated fermentation of dietary fibers. It is the main source of energy for colonocytes, and is regarded to have tumor suppressive effects, most prominently in colorectal cancer (CRC). Cyclooxygenase-2 (COX-2) is a gene important in the inflammatory response due to its ability to convert arachidonic acid to prostaglandins. Overexpression and ov...
Evaluation of functional changes in akr overexpressing colorectal cell line sw480
Ermiş, Çağdaş; Banerjee, Sreeparna; Erel Göktepe, İrem; Department of Biochemistry (2021-2-02)
The Aldo-Keto Reductases (AKR) are nicotinamide adenine dinucleotide (NAD(P)H) dependent oxidoreductases that function in phase 1 metabolismbyreducingaldehydes and ketones into primary and secondary alcohols. Inthis protein superfamily, the expression of AKR1B1 and AKR1B10 enzymes have been linked by us and others to colorectal cancer (CRC). Over-activation of these enzymes in the presence of excess glucose can result in the activation of the polyol pathway, which causes oxidative stress and migh...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. G. Seza, “The Functional effects of AKR1B10 overexpression in colorectal cancer cell lines,” M.S. - Master of Science, Middle East Technical University, 2017.