Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Syntheses and investigation of optoelectronic properties of benzothiadiazole and benzotriazole containing conjugated polymers
Download
index.pdf
Date
2017
Author
Keleş, Duygu
Metadata
Show full item record
Item Usage Stats
294
views
126
downloads
Cite This
Benzothiadiazole is one of the most widely used acceptor units in Donor–Acceptor copolymers for organic solar cells (OSCs) with its strong electron withdrawing ability. It is also known that fluorine atom substitution directly to the backbone of conjugated polymers can improve the important parameters such as power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of OSCs. Besides benzothiadiazole, benzotriazole is another acceptor moiety which is used in OSCs frequently. In this study, two different random polymers, including benzothiadiazole and benzotriazole as the accepting units and benzodithiophene as the donor unit, were synthesized via Stille polymerization reaction. Moreover, effects of fluorine atom on optical, electrochemical and optoelectronic properties were investigated. Optical band gap values of P1 and P2 were found as 1.78 eV and 1.72 eV, respectively. After characterization of polymers via UV-Vis-NIR spectroscopy, cyclic voltammetry (CV), gel permeation chromatography (GPC) and thermal analysis, the polymers were used to construct organic photovoltaic cells. Fabrication and characterization of them was performed in nitrogen-filled glove box system. While the polymers act as electron donor, PC70BM was electron acceptor in the OSCs which were constructed according to ITO/PEDOT:PSS/Polymer:PC70BM/LiF/Al. Morphology of Polymer:PC70BM blends was investigated with Atomic Force Microscopy (AFM). In consequence of measurement under standard AM 1.5 G illumination (100 mW/cm2), the highest power conversion efficiency was found as 4.13% for P1 and 3.80% for P2.
Subject Keywords
Solar cells.
,
Photovoltaic cells.
,
Conjugated polymers.
,
Benzothiadiazole.
,
Benzotriazole.
URI
http://etd.lib.metu.edu.tr/upload/12621228/index.pdf
https://hdl.handle.net/11511/26791
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Synthesis, electrochemical characterization and organic solar cell applications of selenophene containing conjugated polymers
Yaşa, Mustafa; Toppare, Levent Kamil; Department of Polymer Science and Technology (2017)
Donor-Acceptor (D-A) type conjugated polymers are very popular for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. In literature, cyclopentadithiophene and its derivatives are commonly used electron donor units for organic solar cells. The incorporation of selenium atom into polymer backbone results in low band gap polymers as compared to sulfur and oxygen counterparts. In this study, selenophene containing conjugated po...
Syntheses of functional materials for organic photovoltaic and electrochromic device applications
Varlıoğlu, Figen; Günbaş, Emrullah Görkem; Department of Polymer Science and Technology (2017)
Thienothiophene based moities are widely investigated for organic solar cell applications. In this study, after synthesizing 2-ethylhexyl 4,6-dibromothieno [3,4-b]thiophene-2-carboxylate successfully, copolymerization with commercially available donor 4-(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-dithieno[3,2-b:2',3'-d]pyrrole, DTPy, was performed via Stille coupling. At each step, Nuclear Magnetic Resonance (NMR) Spectroscopy were performed for structural analysis. Cyclic voltammogram was used for investig...
Syntheses of benzodithiophene and thienopyrroledione containing conjugated random polymers as components for organic solar cells
Azeri, Özge; Çırpan, Ali; Department of Chemistry (2017)
In recent years organic solar cells (OSC) have attracted considerable attention as promising candidates for renewable energy technology because of their low cost, light weight and flexibility. In this study, in order to improve the efficiency of a bulk heterojunction solar cell, two conjugated random polymers were designed. For this purpose, benzodithiophene and thienopyrroledione containing two random copolymers were synthesized. The effects of several acceptors such as benzotriazole and benzothiadiazole o...
Synthesis of novel diketopyrrole and selenophene containing nir absorbing polymers and their application in bulk-heterojunction solar cells
Öklem, Gülce; Günbaş, Emrullah Görkem; Department of Polymer Science and Technology (2017)
DPP-based conjugated polymers are recently used in organic light emitting diodes, electrochromic devices, organic field effect transistor and organic solar cell applications. Their advantageous properties, such as broad optical absorption in Near Infra Red (NIR) region, high charge carrier mobility and good film forming ability make them an excellent choice for generation of highly efficient solar cells. In this thesis, using donor-acceptor approach (D-A) we aimed to synthesize novel polymers with furan bas...
Synthesis, characterizations and photovoltaic applications of dithienothiophene and benzotriazole containing conjugated polymers
Cevher, Şevki Can; Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2013)
Fused bithiophene containing conjugated polymers are recently used in different applications; for example organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. Fused bithiophene derivatives increase the planarity, charge mobility and decrease band gap when incorporated into the polymer backbone. Connecting atom between the bithiopheneunit can be phosphorous, silicon, nitrogen and sulphur. In this thesis, dihienothiophene was coupled with benzotriazole via S...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Keleş, “Syntheses and investigation of optoelectronic properties of benzothiadiazole and benzotriazole containing conjugated polymers,” M.S. - Master of Science, Middle East Technical University, 2017.