Syntheses and investigation of optoelectronic properties of benzothiadiazole and benzotriazole containing conjugated polymers

Keleş, Duygu
Benzothiadiazole is one of the most widely used acceptor units in Donor–Acceptor copolymers for organic solar cells (OSCs) with its strong electron withdrawing ability. It is also known that fluorine atom substitution directly to the backbone of conjugated polymers can improve the important parameters such as power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of OSCs. Besides benzothiadiazole, benzotriazole is another acceptor moiety which is used in OSCs frequently. In this study, two different random polymers, including benzothiadiazole and benzotriazole as the accepting units and benzodithiophene as the donor unit, were synthesized via Stille polymerization reaction. Moreover, effects of fluorine atom on optical, electrochemical and optoelectronic properties were investigated. Optical band gap values of P1 and P2 were found as 1.78 eV and 1.72 eV, respectively. After characterization of polymers via UV-Vis-NIR spectroscopy, cyclic voltammetry (CV), gel permeation chromatography (GPC) and thermal analysis, the polymers were used to construct organic photovoltaic cells. Fabrication and characterization of them was performed in nitrogen-filled glove box system. While the polymers act as electron donor, PC70BM was electron acceptor in the OSCs which were constructed according to ITO/PEDOT:PSS/Polymer:PC70BM/LiF/Al. Morphology of Polymer:PC70BM blends was investigated with Atomic Force Microscopy (AFM). In consequence of measurement under standard AM 1.5 G illumination (100 mW/cm2), the highest power conversion efficiency was found as 4.13% for P1 and 3.80% for P2.


Synthesis of novel diketopyrrole and selenophene containing nir absorbing polymers and their application in bulk-heterojunction solar cells
Öklem, Gülce; Günbaş, Emrullah Görkem; Department of Polymer Science and Technology (2017)
DPP-based conjugated polymers are recently used in organic light emitting diodes, electrochromic devices, organic field effect transistor and organic solar cell applications. Their advantageous properties, such as broad optical absorption in Near Infra Red (NIR) region, high charge carrier mobility and good film forming ability make them an excellent choice for generation of highly efficient solar cells. In this thesis, using donor-acceptor approach (D-A) we aimed to synthesize novel polymers with furan bas...
Syntheses of benzodithiophene and thienopyrroledione containing conjugated random polymers as components for organic solar cells
Azeri, Özge; Çırpan, Ali; Department of Chemistry (2017)
In recent years organic solar cells (OSC) have attracted considerable attention as promising candidates for renewable energy technology because of their low cost, light weight and flexibility. In this study, in order to improve the efficiency of a bulk heterojunction solar cell, two conjugated random polymers were designed. For this purpose, benzodithiophene and thienopyrroledione containing two random copolymers were synthesized. The effects of several acceptors such as benzotriazole and benzothiadiazole o...
Synthesis, electrochemical characterization and organic solar cell applications of selenophene containing conjugated polymers
Yaşa, Mustafa; Toppare, Levent Kamil; Department of Polymer Science and Technology (2017)
Donor-Acceptor (D-A) type conjugated polymers are very popular for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. In literature, cyclopentadithiophene and its derivatives are commonly used electron donor units for organic solar cells. The incorporation of selenium atom into polymer backbone results in low band gap polymers as compared to sulfur and oxygen counterparts. In this study, selenophene containing conjugated po...
Syntheses of functional materials for organic photovoltaic and electrochromic device applications
Varlıoğlu, Figen; Günbaş, Emrullah Görkem; Department of Polymer Science and Technology (2017)
Thienothiophene based moities are widely investigated for organic solar cell applications. In this study, after synthesizing 2-ethylhexyl 4,6-dibromothieno [3,4-b]thiophene-2-carboxylate successfully, copolymerization with commercially available donor 4-(2-ethylhexyl)-2,6-bis(trimethylstannyl)-4H-dithieno[3,2-b:2',3'-d]pyrrole, DTPy, was performed via Stille coupling. At each step, Nuclear Magnetic Resonance (NMR) Spectroscopy were performed for structural analysis. Cyclic voltammogram was used for investig...
Synthesis and optoelectronic applications of benzotriazole and dibenzosilole based alternating copolymers
Erlik, Ozan; Çırpan, Ali; Department of Chemistry (2014)
Dibenzosilole synonym of silafluorene based polymers have been extensively used as the donor moiety in D-A approach for several years for optoelectronic applications like electrochromic (EC) devices, organic light emitting diodes (OLEDs), organic field effect transistors (OFETs) and most widely organic photovoltaics (OPVs). Moreover, chalcogenophenes such as thiophene and selenophene are used as an energy bridge between the donor and acceptor units to adjust the electronic and optical properties of the conj...
Citation Formats
D. Keleş, “Syntheses and investigation of optoelectronic properties of benzothiadiazole and benzotriazole containing conjugated polymers,” M.S. - Master of Science, Middle East Technical University, 2017.