Preparation of anti-adhesive and antibacterial surfaces using polymers

Onat, Bora
Layer-by-layer self-assembly of polymers is a versatile technique which can impart new functions to the surfaces of biomedical instruments and biomaterials. Materials which are coated by this technique can exhibit response towards environmental stimuli, such that the controlled release of drugs and similar biologically functional molecules under different stimuli can be observed. In the span of this thesis study, ultra-thin polymer films were prepared through the layer-by-layer self-assembly technique, the physicochemical properties of the films were assessed and their potential functions in biomedical studies which cover coating surfaces to impart anti-adhesive and antibacterial properties were discovered. As described in the first chapter of the thesis, multilayer films of zwitterionic block copolymer micelles has shown bacterial anti-adhesive and pH-responsive antibacterial agent releasing properties. The antibacterial agent was released from the pH-responsive cores of the block copolymer micelles. In the second chapter of the thesis, for the purpose of supporting the bone regeneration and reducing the time of acceptance of the implants in the body, multilayer films of antibacterial Tannic Acid (TA) and biodegradable poly(4-hydroxy-L-proline ester) (PHPE) was studied. It was determined that, these films are osteoconductive and support the regeneration of the bone. In the third chapter of the thesis, multilayer films of TA and thermoresponsive poly(N-vinyl caprolactam) (PVCL) was deposited on hydrogels composed of chitosan and polyethylene glycol (PEG). It was shown that, at physiological temperature, antibiotic release from the hydrogel membranes was enhanced. It was also determined that, hydrogels with TA and PVCL multilayer-film surface modifications enhance the viability of fibroblasts in the skin. This type of hydrogels hold promise in use as antibacterial wound dressings. Layer-by-layer self-assembly technique is a facile and versatile method of preparing biologically functional surfaces. The films which are prepared in the extent of this thesis are not only promising for bacterial anti-adhesive and antibacterial applications, but also for bone regeneration and wound healing.


Preparation and characterization of poly(epsilon-caprolactone) scaffolds modified with cell-loaded fibrin gel
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Nesrin (2019-03-15)
Poly(epsilon-caprolactone) (PCL) is one of the most commonly used polymers in the production of tissue engineered scaffolds for hard tissue treatments. Incorporation of cells into these scaffolds significantly enhances the healing rate of the tissue. In this study, PCL scaffolds were prepared by wet spinning technique and modified by addition of fibrinogen in order to form a fibrin network between the PCL fibers. By this way, scaffolds would have micro and nanofibers in their structures. Drying of the wet s...
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
MAVİŞ, BORA; Demirtas, Tolga T.; GÜMÜŞDERELİOĞLU, MENEMŞE; Gündüz, Güngör; Colak, Uner (2009-10-01)
Immersion of electrospun polycaprolactone (PCL) nanofiber mats in calcium phosphate solutions similar to simulated body fluid resulted in deposition of biomimetic calcium phosphate layer on the nanofibers and thus a highly bioactive novel scaffold has been developed for bone tissue engineering. Coatings with adequate integrity, favorable chemistry and morphology were achieved in less than 6 h of immersion. In the coating solutions, use of lower concentrations of phosphate sources with respect to the literat...
Preparation and thermal characterization of poly(2-vinylpyridine) copolymers coordinated to Cr nanoparticles
Öztürk, Yurdagül; Kayran, Ceyhan; Hacaloğlu, Jale (2015-06-01)
In this study, polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, polyisoprene-block-poly(2-vinylpyridne), PI-b-P2VP and poly(methyl metacrylate)-block-poly(2-vinylpyridine), PMMA-b-P2VP, coordinated to Cr metal were synthesized and characterized by Fourier transform infrared, transmission electron microscopy and direct pyrolysis mass spectrometry techniques. Both thermal degradation mechanism and thermal stability of P2VP blocks were affected by the coordination of Cr nanoparticles to nitrogen of pyridine...
Preparation and characterization of chitosan-gelatin/hydroxyapatite scaffolds for hard tissue engineering approaches
Işıklı, Cansel; Hasırcı, Nesrin; Department of Biomedical Engineering (2010)
Hard tissue engineering holds the promise of restoring the function of failed hard tissues and involves growing specific cells on extracellular matrix (ECM) to develop „„tissue-like” structures or organoids. Chitosan is a linear amino polysaccharide that can provide a convenient physical and biological environment in tissue regeneration attempt. To improve chitosan‟s mechanical and biological properties, it was blended with another polymer gelatin. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-...
Modification of Acrylic Bone Cements with Oxygen Plasma and Additives
Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2012-09-01)
Acrylic bone cements which are commonly used for the fixation of orthopedic prostheses, were prepared at different formulations, by using either ground poly(methyl methacrylate) (PMMA) particles or homogeneously synthesized PMMA microspheres with application of plasma and addition of various ingredients in order to improve mechanical and thermal properties. PMMA powders having three different particle size (ground and sieved particles with 0-50 mu m (BC1 group, average particle size: 21 mu m) and 50-150 mu ...
Citation Formats
B. Onat, “Preparation of anti-adhesive and antibacterial surfaces using polymers,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.