Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation of anti-adhesive and antibacterial surfaces using polymers
Download
index.pdf
Date
2017
Author
Onat, Bora
Metadata
Show full item record
Item Usage Stats
226
views
59
downloads
Cite This
Layer-by-layer self-assembly of polymers is a versatile technique which can impart new functions to the surfaces of biomedical instruments and biomaterials. Materials which are coated by this technique can exhibit response towards environmental stimuli, such that the controlled release of drugs and similar biologically functional molecules under different stimuli can be observed. In the span of this thesis study, ultra-thin polymer films were prepared through the layer-by-layer self-assembly technique, the physicochemical properties of the films were assessed and their potential functions in biomedical studies which cover coating surfaces to impart anti-adhesive and antibacterial properties were discovered. As described in the first chapter of the thesis, multilayer films of zwitterionic block copolymer micelles has shown bacterial anti-adhesive and pH-responsive antibacterial agent releasing properties. The antibacterial agent was released from the pH-responsive cores of the block copolymer micelles. In the second chapter of the thesis, for the purpose of supporting the bone regeneration and reducing the time of acceptance of the implants in the body, multilayer films of antibacterial Tannic Acid (TA) and biodegradable poly(4-hydroxy-L-proline ester) (PHPE) was studied. It was determined that, these films are osteoconductive and support the regeneration of the bone. In the third chapter of the thesis, multilayer films of TA and thermoresponsive poly(N-vinyl caprolactam) (PVCL) was deposited on hydrogels composed of chitosan and polyethylene glycol (PEG). It was shown that, at physiological temperature, antibiotic release from the hydrogel membranes was enhanced. It was also determined that, hydrogels with TA and PVCL multilayer-film surface modifications enhance the viability of fibroblasts in the skin. This type of hydrogels hold promise in use as antibacterial wound dressings. Layer-by-layer self-assembly technique is a facile and versatile method of preparing biologically functional surfaces. The films which are prepared in the extent of this thesis are not only promising for bacterial anti-adhesive and antibacterial applications, but also for bone regeneration and wound healing.
Subject Keywords
Biomedical materials.
,
Antibacterial agents.
,
Tissue engineering.
,
Polymers in medicine.
URI
http://etd.lib.metu.edu.tr/upload/12621564/index.pdf
https://hdl.handle.net/11511/26983
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Preparation and characterization of poly(epsilon-caprolactone) scaffolds modified with cell-loaded fibrin gel
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Nesrin (2019-03-15)
Poly(epsilon-caprolactone) (PCL) is one of the most commonly used polymers in the production of tissue engineered scaffolds for hard tissue treatments. Incorporation of cells into these scaffolds significantly enhances the healing rate of the tissue. In this study, PCL scaffolds were prepared by wet spinning technique and modified by addition of fibrinogen in order to form a fibrin network between the PCL fibers. By this way, scaffolds would have micro and nanofibers in their structures. Drying of the wet s...
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
MAVİŞ, BORA; Demirtas, Tolga T.; GÜMÜŞDERELİOĞLU, MENEMŞE; Gündüz, Güngör; Colak, Uner (2009-10-01)
Immersion of electrospun polycaprolactone (PCL) nanofiber mats in calcium phosphate solutions similar to simulated body fluid resulted in deposition of biomimetic calcium phosphate layer on the nanofibers and thus a highly bioactive novel scaffold has been developed for bone tissue engineering. Coatings with adequate integrity, favorable chemistry and morphology were achieved in less than 6 h of immersion. In the coating solutions, use of lower concentrations of phosphate sources with respect to the literat...
Preparation of a conducting flexible material from silane coupling agent and hydroxyl terminated polybutadiene rubber by hydrolysis and condensation
Karatas, Y; Toppare, Levent Kamil; Tincer, T (Informa UK Limited, 2003-01-01)
Synthesis and characterization of a flexible polymer produced from silane coupling agent (SCA) and hydroxyl terminated polybutadiene (HTPB) were performed. Mechanical properties of chemically and electrochemically prepared conducting composites synthesized from this polymer were investigated. Conductivities of the composites were also measured. Polypyrrole enhanced the mechanical properties of the chemically prepared conducting composite. Doping with iodine greatly changed the conductivity of the composite....
Preparation and thermal characterization of poly(2-vinylpyridine) copolymers coordinated to Cr nanoparticles
Öztürk, Yurdagül; Kayran, Ceyhan; Hacaloğlu, Jale (2015-06-01)
In this study, polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, polyisoprene-block-poly(2-vinylpyridne), PI-b-P2VP and poly(methyl metacrylate)-block-poly(2-vinylpyridine), PMMA-b-P2VP, coordinated to Cr metal were synthesized and characterized by Fourier transform infrared, transmission electron microscopy and direct pyrolysis mass spectrometry techniques. Both thermal degradation mechanism and thermal stability of P2VP blocks were affected by the coordination of Cr nanoparticles to nitrogen of pyridine...
Preparation and Comparison of Two Electrodes for Supercapacitors: Pani/CNT/Ni and Pani/Alizarin-Treated Nickel
Koysuren, Ozcan; Du, Chunsheng; Pan, Ning; Bayram, Göknur (Wiley, 2009-07-15)
Polyaniline in emeraldine form was synthesized in the presence of multiwalled carbon nanotubes (CNTs), and the electrochemical capacitance performance of thus formed composite as electrode material has been Studied. The polyaniline/carbon nanotubes (Pani/CNT) composite is found to result in a higher specific capacitance than that of either composite constituent, attributable to the double-layer capacitance behavior of the nanotubes in the Pani/CNT system. However, once assembled into a two-electrode cell, l...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Onat, “Preparation of anti-adhesive and antibacterial surfaces using polymers,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.