Poly(lactic acid) blends, composites and fibers and direct pyrolysis mass spectrometry for nanoclay composites

Download
2017
Özdemir, Esra
In the first part of this study, poly(lactic acid)-poly(ethylene glycol), PLA-PEG, blends, composites and electrospun fibers of PLA and PLA composites, PLA-PEG blends and PLA-PEG, blends composites were prepared and characterized. X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Gel Permeation Chromatography (GPC), Simultaneous Thermal Analyzer (STA) and Direct Pyrolysis Mass Spectrometer (DP-MS) techniques were used for characterization studies. Both TGA and DP-MS analyses of PLA-PEG blends involving 10, 15 and 20 wt% PEG pointed out that the thermal decomposition occurred mainly in two steps. An interaction between COOH groups of PLA and ether linkages of PEG due to blending process was detected. Addition of 20 wt% PEG decreased the tensile strength and tensile modulus of PLA while improving its ductility due to its plasticization effect. Enhancement in the chemical interactions between PLA and PEG in the presence of Cloisite 30B (C30B) was observed. Also, tensile strength, %elongation at break and Young’s modulus were increased compared to the corresponding blends. Fiber formation not only effected thermal degradation behaviors of PLA, PLA-PEG blends and corresponding composites but also affected the morphology. The intermolecular trans-esterification reactions were enhanced upon fiber formation. Better delamination and intercalation of PLA chains into clay layers of Cloisite 15A (C15A), Cloisite 20A (C20A) and C30B were detected. On the other hand, the interaction between PLA and PEG decreased and phase separation during the electrospinning process was recorded upon fiber generation. On the contrary, in the presence of C30B, the interactions between PLA and PEG were enhanced and the phase separation was not detected for PLA-PEG composite fibers. In the second part of this study, the use of direct pyrolysis mass spectrometry to characterize polymer/organoclay systems was discussed. DP-MS analyses of poly(lactic acid) (PLA), poly(methyl methacrylate), (PMMA) and poly(ethylene) (PE) composites involving organically modified montmorillonites C15A, C20A, C25A (Cloisite 25A), C93A, (Cloisite 93A) or C30B showed that the technique supplies strong evidences for the extent and type of dispersion of clay layers in the polymer matrices. In addition, the technique allows identification of possible interactions between the polymer and the organic modifier.

Suggestions

Thermal characterization of composites of polyamide-6 and polypropylene involving boron compounds via direct pyrolysis mass spectrometry
İşbaşar Afacan, Güllü Ceyda; Hacaloğlu, Jale; Yılmazer, Ülkü; Department of Polymer Science and Technology (2013)
In this work, the effects of addition of boron compounds, boron phosphate (BPO4), zinc borate (ZnB), borosilicate (BSi) and lanthanum borate (LaB), on thermal degradation characteristics of composites of polyamide 6 (PA6) and polypropylene (PP) are analyzed via Direct Pyrolysis Mass Spectrometry (DP-MS) technique. The composites of PA6 involve nitrogen containing flame retardants, melamine (Me) or melamine cyanurate (MC); or phosphorus containing flame retardant, aluminum diethylphosphinate (AlPi), with or ...
Poly(lactic acid) based nanocomposites: mechanical, thermal and rheological properties and morphology
Açık, Eda; Yılmazer, Ülkü; Department of Chemical Engineering (2014)
The aim of this study was to increase the potential applications of poly(lactic acid) (PLA) by incorporating reactive functionalities with different nano-scale fillers. To investigate the effects of nanoclay types, five different organically modified nanoclays (Cloisites®15A, 25A and 30B and Nanofils®5 and 8) were used. Two elastomeric compatibilizers, ethylene-glycidyl methacrylate (E-GMA) and ethylene-butyl acrylate-maleic anhydride (E-BA-MAH), were added to the nanocomposites produced via melt compoundin...
Design of cinnamon oil coated active paper sheets
Akbaş, Derya; Öztop, Halil Mecit; Şahin, Serpil; Department of Food Engineering (2017)
In the first part of this study, poly(lactic acid)-poly(ethylene glycol), PLA-PEG, blends, composites and electrospun fibers of PLA and PLA composites, PLA-PEG blends and PLA-PEG, blends composites were prepared and characterized. X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Gel Permeation Chromatography (GPC), Simultaneous Thermal Analyzer (STA) and Direct Pyrolysis Mass Spectrometer (DP-MS) techniques were used for characterization studies. Both T...
Electrical transport, optical and thermal properties of polyaniline-pumice composites
YILMAZ, KORAY; Akgoz, A.; Cabuk, M.; Karaagac, H.; KARABULUT, ORHAN; YAVUZ, Mustafa (2011-11-01)
In this study, electrical conductivity, photoconductivity, absorbance and thermal properties of polyaniline (PANI) and polyaniline-pumice composites were investigated. Temperature dependent conductivity and photoconductivity measurements were carried out in the temperature range of 80-400K. The measurements revealed that the dominant conduction mechanisms in polyaniline and 15% pumice doped composite were hopping conduction. The low activation energies calculated for 36% pumice doped composite indicated tha...
Dual type complementary colored polymer electrochromic devices based on conducting polymers of poly(hexanedioic acid bis-(2-thiophen-3-yl-ethyl ester)
Camurlu, P; Toppare, Levent Kamil (Informa UK Limited, 2006-03-01)
In this study, dual type polymer electrochromic devices (ECDs) based on homopolymer and copolymer of hexanedioic acid bis-(2-thiophen-3-yl-ethyl ester) with 3,4-ethylene dioxythiophene (EDOT) were constructed, where PEDOT functioned as the cathodically coloring layer. Spectroelectrochemistry, switching ability, stability, open circuit memory and color of the devices were investigated. Results of the kinetic studies showed these devices exhibit switching times around 1.8 s with an optical contrast of 24-25.3...
Citation Formats
E. Özdemir, “Poly(lactic acid) blends, composites and fibers and direct pyrolysis mass spectrometry for nanoclay composites,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.