Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A numerical analysis of interdigitated back contacted silicon solar cells
Download
index.pdf
Date
2018
Author
Acar, Beran
Metadata
Show full item record
Item Usage Stats
287
views
94
downloads
Cite This
The state-of-the-art solar cells manufactured using crystalline silicon (c-Si) are highly cost-effective, competing with fossil fuel-based energy sources. However, relatively more complex cell structures (i.e. interdigitated back contact, IBC) need to be developed to further increase the efficiency/cost ratio. In this thesis, the effects of structural parameters such as cell dimensions, metal contact geometry and contact resistances on the efficiency of IBC and bifacial IBC silicon solar cells were studied by numerical simulations. Light absorption in IBC and bifacial IBC solar cells was simulated using ray optics method in Opal 2 simulation software. The extracted generation profiles were embedded into Silvaco TCAD. Efficiency (), open circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF) of solar cells were calculated for various device configurations. The results showed that the usage of high quality bulk Si providing longer carrier lifetime values up to 10 ms is more effective on cell efficiency than changing the base doping between the limits 1x1014 to 1x1017 atoms/cm3. Furthermore, the effect of the ratio of emitter width to cell width was investigated and the optimum ratio is found to be 79%. An optimum structure for a minority carrier lifetime of 1 ms and base doping concentration of 1x1016 cm-3 is obtained when an emitter width of 1500 μm and a back surface field width of 300 μm is realized. Finally, the effects of contact widths of bifacial IBC solar cells on efficiency were studied. A contact coverage fraction around 20% yields the highest efficiency for a floor reflection of 30%.
Subject Keywords
Solar cells.
,
Silicon solar cells
URI
http://etd.lib.metu.edu.tr/upload/12621871/index.pdf
https://hdl.handle.net/11511/27100
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
Production of amorphous silicon / p-type crystalline silicon heterojunction solar cells by sputtering and PECVD methods
Eygi, Zeynep Deniz; Turan, Raşit; Erçelebi, Ayşe Çiğdem; Department of Physics (2011)
Silicon heterojunction solar cells, a-Si:H/c-Si, are promising technology for future photovoltaic systems. An a-Si:H/c-Si heterojunction solar cell combines the advantages of single crystalline silicon photovoltaic with thin-film technologies. This thesis reports a detailed survey of heterojunction silicon solar cells with p-type wafer fabricated by magnetron sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques at low processing temperature. In the first part of this study, magnetron ...
Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells
Akınoğlu, Bülent Gültekin; Badescu, Viorel (2021-08-01)
Solar cells have over 50-years of development history; many different devices and technologies are studied over this time span, and interestingly it is still a hot research topic. Although the physical mechanisms involved in photovoltaic processes are rather fundamental, the characterization and classification of the research pathways seem complicated and can even lead to misleading argumentation. Various photovoltaic devices are classified as first, second- and third- generation based on the developments f...
Surface modification of multi-crystalline silicon in photovoltaic cell by laser texturing
Radfar, Behrad; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Surface of crystalline silicon solar cell plays an important role in its performance. It affects the optical properties which can be determined by surface’ reflectance. To minimize the reflection from the flat surface, thus, improve light trapping, the crystalline silicon wafers must be textured. Through the texturing process, roughness is introduced at the surface, so the incident light has a larger probability of being absorbed into the solar cell. Monocrystalline silicon solar cells can typically be text...
Structuring of surface for light management in monocrystalline Si solar cells
Bilgen, Sedat; Turan, Raşit; Department of Physics (2015)
Texturing of a silicon wafer is the first process of production of screen printed solar cells to reduce the reflection losses by producing pyramids on the surface of the silicon wafer. Being a cheap and time efficient process, texturing is used in all industrial applications. For mono-crystalline silicon wafers, the process is carried out by using an alkaline solution which consists of potassium hydroxide (KOH), isopropyl alcohol (IPA) and de-ionized water (DI-water) which is heated to 75- 80oC, and wafers ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Acar, “A numerical analysis of interdigitated back contacted silicon solar cells,” M.S. - Master of Science, Middle East Technical University, 2018.