Improving the strength of additively manufactured objects via modified interior structure

Download
2018
Al, Can Mert
This thesis study provides an approach to improve the durability of additively manufactured parts via modified interior structures by considering the stress field results from tensile loading conditions. In other words, the study provides an automated method, i.e., implicit slicing method, which improves the strength of the parts with infill structures modified according to the quasi-static Finite Element Analysis (FEA) results under tensile loadings, automatically. The parts which are used throughout the work are designed by using Rhinoceros3D which is Computer Aided Design (CAD) software by considering the ASTM D638 standard. In scope of this study, the interior structures of the designed parts are modified by using the developed algorithm in Grasshopper3D, which provides the strength improvements by the help of heterogeneous infill structures. The quasi-static FEA is performed in Karamba3D which works as a plug-in on Grasshopper3D. Interior structures are constructed by using the stress field results and the first principal stress vector directions under the tensile loading conditions. The G-Code file which is required to manufacture the parts via 3D printing is also obtained inside the constructed Grasshopper3D schema by using a Python scripting to be used for a DeltaWASP 3D printer. For the geometries, different methods were employed to construct the interior structures. Then, the method which gives the most durable parts was applied for different parts to prove the applicability of the approach. The tensile tests were performed by using the ASTM-D638 tensile testing standard. The first version of the developed method was a kind of manual method which provides strength improvement about 42%. Regarding the further steps of this thesis study, the method used to construct the infill structure was tried to be automated whic provides about 50% strength improvement.

Suggestions

Improving the strength of additively manufactured objects via modified interior structure
AL, Can Mert; Yaman, Ulaş (2017-04-28)
This thesis study provides an approach to improve the durability of additively manufactured parts via modified interior structures by considering the stress field results from tensile loading conditions. In other words, the study provides an automated method, i.e., implicit slicing method, which improves the strength of the parts with infill structures modified according to the quasi-static Finite Element Analysis (FEA) results under tensile loadings, automatically. The parts which are used throughout the w...
Upgrading of slab-column connections using fiber reinforced polymers
Binici, Barış (Elsevier BV, 2005-01-01)
The results of an experimental program on upgrading of reinforced concrete slab-column connections subjected to monotonic shear and unbalanced moment transfer are presented in this study. Externally installed carbon fiber reinforced polymer (CFRP) stirrups acting as shear reinforcement around the slab-column connection area were used with two patterns of CFRP arrangements. It was found that the proposed method resulted in punching shear capacity increases up to 60% relative to the specimen without any stren...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
Predicting the shear strength of reinforced concrete beams using artificial neural networks
Mansour, MY; Dicleli, Murat; Lee, JY; Zhang, J (Elsevier BV, 2004-05-01)
The application of artificial neural networks (ANNs) to predict the ultimate shear strengths of reinforced concrete (RC) beams with transverse reinforcements is investigated in this paper. An ANN model is built, trained and tested using the available test data of 176 RC beams collected from the technical literature. The data used in the ANN model are arranged in a format of nine input parameters that cover the cylinder concrete compressive strength, yield strength of the longitudinal and transverse reinforc...
Citation Formats
C. M. Al, “Improving the strength of additively manufactured objects via modified interior structure,” M.S. - Master of Science, Middle East Technical University, 2018.