Real time unmanned air vehicle routing

Download
2018
Karabay, Nail
In this thesis, we study real-time routing of an unmanned air vehicle (UAV) in a twodimensional dynamic environment. The UAV starts from a base point, visits all targets and returns to the base point, while all targets change their locations during the mission period. We find the best route for the route planner (RP) considering two objectives; minimization of distance and minimization of radar detection threat. We develop a real-time algorithm to find the UAV’s most preferred route for a RP who has an underlying linear or quadratic preference function. In this algorithm, we structure the nondominated frontiers of the trajectories between each target pair and find a route using these trajectories. The algorithm updates the route of the UAV each time the UAV arrives at a target. As the UAV must return to the base target at the end of its journey, we solve a multi-objective shortest Hamiltonian path problem to find a route rather than a multi-objective traveling salesperson problem each time the UAV visits a target. To reduce the computational burden, we develop k-closest heuristic. In this heuristic, instead of structuring the nondominated frontiers between all target pairs, for each target, we select k closest targets and structure only the nondominated vi frontiers of these k targets. In addition, we develop an adaptive algorithm to determine the value of k. For the RP who has a quadratic preference function, we choose among {u1D45B} nondominated trajectories for each target pair to find a route. We consider the cases n = 1 and n > 1, seperately. We demonstrate all algorithms on different examples

Suggestions

Landing autopilot design for an unmanned aerial vehicle /
Ak, Ayşe İlden; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2014)
In this thesis, studies for the development of a landing autopilot for the UAV (Unmanned Aerial Vehicle), Pioneer RQ2 are presented. Firstly, 6 DOF (degree of freedom) nonlinear model of Pioneer is implemented in Matlab-Simulink based on FDC (Flight Dynamics and Control) Toolbox. Then, in accordance with steady-state wings level flight condition, trim points are found for different airspeed values, constant height and zero flight path angle. The nonlinear model of Pioneer is linearized at these trim points ...
System identification using flight test data
Şimşek, Orkun; Tekinalp, Ozan; Department of Aerospace Engineering (2014)
In this study, a linear model of an unmanned aerial vehicle (UAV) is developed by using frequency domain system identification methods. The data used in the identification methods are obtained by performing flight tests. To obtain appropriate flight test data for identification process, flight test maneuvers are designed. These flight test data are used in two main frequency domain system identification methods, namely, transfer function modeling and state space modeling. The linear models obtained by using...
Vision-aided landing for fixed wing unmanned aerial vehicle
Esin, Engin; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
The aim of this thesis is to design an autoland system for fixed wing unmanned aerial vehicle (UAV) to make auto landing by using position information calculated by image processing algorithms. With this ability, even if GPS is not available to be used, UAV still could make a safe automatic landing. Landing autopilot is aimed to keep UAV on a straight line with a constant flight path angle. Therefore, landing autopilot and computer vision methods are studied within the scope of this thesis. Also, to test de...
Development of an autopilot for automatic landing of an unmanned aerial vehicle
Arıbal, Seçkin; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total a...
Path planning and coordinated guidance of multiple unmanned aerial vehicles
Ergezer, Halit; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2013)
In this thesis, both off-line and online coordinated path planning for Unmanned Aerial Vehicles (UAVs) are studied. These problems have emerged due to the increasing needs for UAVs in both military and civil applications. To accomplish a certain objective, both the path planning for a single UAV and for multiple UAVs have been examined. Although there are previous studies in this field, we focus on maximizing the collected information instead of minimizing the total mission time. Studies carried out in this...
Citation Formats
N. Karabay, “Real time unmanned air vehicle routing,” M.S. - Master of Science, Middle East Technical University, 2018.