Development of an autopilot for automatic landing of an unmanned aerial vehicle

Arıbal, Seçkin
This thesis presents the design of an autopilot and guidance system for an unmanned aerial vehicle. Classical (PID) and modern control (LQT, Sliding Mode) methods for autonomous navigation and landing in adverse weather conditions are implemented. Two different guidance systems are designed in order to navigate through waypoints during normal and/or emergency flight. The nonlinear Pioneer UAV model is used in controller development and simulations. Aircraft is linearized at different trim points and total airspeed, altitude, roll and yaw autopilots are designed using Matlab/Simulink environment for lateral and longitudinal control of the aircraft. Gain scheduling is used to combine controllers designed for different trim points. An optimal landing trajectory is determined using “Steepest Descent” Algorithm according to the dynamic characteristics of the aircraft. Optimal altitude trajectory is used together with a lateral guidance against cross-wind disturbance. Finally, simulations including landing under crosswind, tailwind, etc., are run and the results are analyzed in order to demonstrate the performance and effectiveness of the controllers.


Landing autopilot design for an unmanned aerial vehicle /
Ak, Ayşe İlden; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2014)
In this thesis, studies for the development of a landing autopilot for the UAV (Unmanned Aerial Vehicle), Pioneer RQ2 are presented. Firstly, 6 DOF (degree of freedom) nonlinear model of Pioneer is implemented in Matlab-Simulink based on FDC (Flight Dynamics and Control) Toolbox. Then, in accordance with steady-state wings level flight condition, trim points are found for different airspeed values, constant height and zero flight path angle. The nonlinear model of Pioneer is linearized at these trim points ...
Design and manufacturing of a high speed, jet powered target drone
Özyetiş, Ender; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
This thesis presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. The Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which a...
Design and manufacturing of a solar powered unmanned air vehicle
Özcan, Servet Güçlü; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2015)
The aim of this thesis is to describe the conceptual design, performance analysis including solar energy collection and manufacturing process of a solar powered unmanned aerial vehicle (UAV) and validate the design through ground and flight tests. Through a literature survey of solar powered aircraft, main design requirements are chosen. The solar powered UAV designed for this study is a small scale aircraft and intended to be used simply and frequently by end-users. Therefore it is designed as a flying win...
Design and control OF X5 unmanned aerial robot
Noudeh, Mehran Ebadollahi; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2015)
This thesis presents a mathematical model and an autopilot of a new type Unmanned AerialRobot(UAR)namedX5withafocusonVerticalTake-offandLanding(VTOL) systems. Physically,itconsistsofalargepropellertocarrythemainpayload,andfour small propellers for controlling the attitude. It presents a nonlinear 6 degrees of freedom (DOF) model of X5 based on Newton-Euler method for simulation and control. The mathematical model introduced in this work includes the rotor dynamics and detailed aerodynamic effects. Theautopi...
Development of an advanced composite external fuel tank for air platforms
Karahan, Uğurcan; Parnas, Kemal Levend; Department of Mechanical Engineering (2014)
This thesis provides a design approach for an external fuel tank, which permits external mounting to the air platforms including rotorcrafts and aircrafts. The development stages include both a computational and an experimental study. In this thesis, unique combination of advanced composite material solutions is investigated in the structural design process. Filament-wound tank structure is modeled as multi-layered orthotropic structure. Various worst-case loading scenarios defined by internationally recogn...
Citation Formats
S. Arıbal, “Development of an autopilot for automatic landing of an unmanned aerial vehicle,” M.S. - Master of Science, Middle East Technical University, 2011.