Use of detached eddy simulation for aerodynamics and aeroacoustics of blade sections

Cengiz, Kenan
Investigation of noise generation mechanisms due to turbulence necessitates resolution of eddies in space and time. Among the broad-band noise simulation tools, direct numerical simulation (DNS) is the most comprehensive one. However, it is prohibitively expensive. At the other extreme, unsteady Reynolds-averaged Navier-Stokes (URANS) based solvers, which are widely used in industry, can merely be reliable for attached flows. Besides, the inherent time-averaging procedure destroys the unsteadiness of eddies in most of the scales. Moreover, large-eddy simulation (LES) is still expensive in Reynolds numbers of industrial interest. At that point, use of hybrid RANS/LES approaches come to aid for capturing broad range of spectrum at acceptable costs. As a non-zonal variant, detached-eddy simulation (DES) has increasingly become useful in determination of noise generation mechanisms. There are commercial codes with DES modules. However, because of highly dissipative and dispersive low-order schemes of such codes, direct simulation of noise requires extremely fine meshes. Therefore, the aim of this thesis is to develop a low-dissipative low-dispersive high-order finite volume code to solve the compressible Navier-Stokes equations with DES capability, which will enable resolving eddies that are responsible for aeroacoustic noise generation around bodies. Thanks to an enhancement over DES, the model becomes more viable in attached flow problems, with a swifter switch to LES mode towards the outer boundary layer. Several validation studies reveal the solvers low-dissipation qualities. Finally, noise from a wing section is investigated. This is an important step towards design of quieter wind turbine blades. Ffowcs Williams and Hawkings acoustic analogy is utilized for prediction of the noise at far locations. Both the aerodynamic and aeroacoustic results show good agreements with the benchmark data, for markedly less computational cost than an LES study.


Cogging Torque Disturbance Rejection for a Low-cost Gimbal Motor and a Controller Design with Practical Considerations
Ozdogan, Gokhan; Leblebicioğlu, Mehmet Kemal (2019-01-01)
In many robotic applications and inertially stabilized electro-optic gimbal systems, precise positioning and speed control are highly important concepts. Due to size and weight limitations, motor is required to be small but torque density is desired to be high. In high torque and cheap PMSM and BLDC motors, cogging torque and friction are usually the challenging disturbance sources. In this study, cogging torque and friction are identified using position sensors which already exist in gimbal systems, so the...
Studies of Charm Quark Diffusion inside Jets Using Pb-Pb and pp Collisions at root s(NN)=5.02 TeV
Sirunyan, A. M.; et. al. (American Physical Society (APS), 2020-09-01)
The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with p(T)(jet) > 60 GeV/c and D-0 mesons with p(T)(D) > 4 GeV/c in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of root s(NN) = 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D-0 mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as t...
Application of spring analogy mesh deformation technique in airfoil design optimization
Yang, Yosheph; Özgen, Serkan; Department of Aerospace Engineering (2015)
In this thesis, an airfoil design optimization with Computational Fluid Dynamics (CFD) analysis combined with mesh deformation method is elaborated in detail. The mesh deformation technique is conducted based on spring analogy method. Several improvements and modifications are addressed during the implementation of this method. These enhancements are made so that good quality of the mesh can still be maintained and robustness of the solution can be achieved. The capability of mesh deformation is verified by...
On numerical simulations of fore and aft noise radiation from turbofans
Özyörük, Yusuf; Long, L.N. (2003-01-01)
This paper discusses numerical simulations of fore and aft noise radiation from turbofan engines. Three different approaches are considered. These are based on the explicit solutions of the full Euler equations, Euler equations linearized about a nonuniform background flow, and the frequency space form of the linearized Euler equations with nonuniform flow, respectively. Issues related to the fan-face inflow and outflow boundary conditions are discussed, and results from the three methods are presented and ...
In-orbit estimation of time-varying residual magnetic moment for small satellite applications
Söken, Halil Ersin (2013-09-16)
A method for in-orbit estimation of time-varying residual magnetic moment is presented for small satellite applications. The Unscented Kalman Filter is used as the estimator. Unlike the existing studies in the literature, unexpected abrupt changes in the residual magnetic moment are also considered. Sudden shifts in the mean of the residual magnetic moment is detected by a low pass filter applied to the normalized innovation of the Unscented Kalman Filter. Then, by using a simple approach, which does not re...
Citation Formats
K. Cengiz, “Use of detached eddy simulation for aerodynamics and aeroacoustics of blade sections,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.