Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic fracture of explosive bolt
Download
index.pdf
Date
2018
Author
Gökçe, Batuhan
Metadata
Show full item record
Item Usage Stats
381
views
142
downloads
Cite This
In this study, dynamic fracture of the pressure type explosive bolt is established with different geometry of the piston, which is used to break the body, to enhance the reliability of the system. Before the fracture analysis of the explosive bolts, pyrotechnic combustion analysis is studied and 0-D ballistic solver is developed to simulate the performance of the initiator into the pyrotechnic, namely pressure type, explosive bolt. By using the developed model, the pressure and temperature in the expansion chamber, the position and velocity of the piston can be predicted. After prediction of these parameters, the pressure expansion is validated with closed bomb experiments. Then, three different shape piston models are developed to study on clean separation without fragmenting parts with minimum dissipated of energy during the separation of the system to get higher reliability. The varied separation behavior of these pyrotechnic explosive bolt models are analyzed and compared in LS-DYNA.
Subject Keywords
Bolts and nuts.
,
Pyrotechnics.
URI
http://etd.lib.metu.edu.tr/upload/12622243/index.pdf
https://hdl.handle.net/11511/27353
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Active Control of Smart Fin Model for Aircraft Buffeting Load Alleviation Applications
Chen, Yong; Ulker, Fatma Demet; Nalbantoglu, Volkan; Wickramasinghe, Viresh; Zimcik, David; Yaman, Yavuz (2009-11-01)
Following the program to lest a hybrid actuation system for high-agility aircraft buffeting load alleviation oil the full-scale F/A-18 vertical fin structure, an investigation has been performed to understand the aerodynamic effects of high-speed vortical flows on the dynamic characteristics of vertical fin structures. Extensive wind-tunnel tests have been conducted on a scaled model fill integrated with piezoelectric actuators and accelerometers to measure file aft-tip vibration responses under various fre...
Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process
Shabgard, Mohammadreza; Oliaei, Samad Nadimi Bavil; Seyedzavvar, Mirsadegh; Najadebrahimi, Ahmad (2011-12-01)
An axisymmetric three-dimensional model or temperature distribution in the electrical discharge machining process has been developed using the finite element method to estimate the surface integrity characteristics of AISI H13 tool steel as workpiece. White layer thickness, depth of heat affected zone, and arithmetical mean roughness consisting of the studied surface integrity features on which the effect of process parameters, including pulse on-time and pulse current were investigated. Additionally, the e...
Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle-tool assemblies
Ertuerk, A.; Özgüven, Hasan Nevzat; Budak, E. (Elsevier BV, 2007-01-01)
Self-excited vibration of the tool, regenerative chatter, can be predicted and eliminated if the stability lobe diagram of the spindle-holder-tool assembly is known. Regardless of the approach being used, analytically or numerically, forming the stability lobe diagram of an assembly implies knowing the point frequency response function (FRF) in receptance form at the tool tip. In this paper, it is aimed to study the effects of spindle-holder and holder-tool interface dynamics, as well as the effects of indi...
Thermal history and microstructure during friction stir welding of Al-Mg alloy
Sheikh-Ahmad, J. Y.; Ozturk, F.; Jarrar, F.; Evis, Zafer (Springer Science and Business Media LLC, 2016-09-01)
In this study, a commercial aluminum-magnesium alloy was friction stir welded (FSW) at a constant rotational speed of 1016 rpm and different welding speeds from 50 to 400 mm/min. Temporal thermal histories of the process were recorded at different locations from the weld line and transformed to spatial temperature distribution near the weld line. Tensile and microhardness measurements were also performed and the microstructure in the weld zone was investigated. Results of this revealed that an increase in w...
Accurate pressure prediction of a servo-valve controlled hydraulic system
KILIÇ, Ergin; Dölen, Melik; Koku, Ahmet Buğra; Çalışkan, Hakan; Balkan, Raif Tuna (2012-10-01)
The main goal of this paper is to predict the chamber pressures in hydraulic cylinder of a servo-valve controlled hydraulic system accurately using advanced modeling tools like artificial neural networks. After showing that the black-box modeling approaches are not sufficient for long-term prediction of pressures, a structured neural network model is proposed to capture the pressure dynamics of this inherently non-linear system. The paper shows that the proposed network model could be easily trained to pred...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Gökçe, “Dynamic fracture of explosive bolt,” M.S. - Master of Science, Middle East Technical University, 2018.