Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of metal forming by using isogeometric elements
Download
index.pdf
Date
2018
Author
Özdoğan, Yasin
Metadata
Show full item record
Item Usage Stats
265
views
126
downloads
Cite This
In this thesis, a new numerical analysis method named as isogeometric analysis (IGA), based on usage of non-uniform rational basis spline (NURBS) basis functions is studied in order to examine the behavior of parts in the forming processes. NURBS is a mathematical modeling method used for representing any kind of curves, surfaces and 3-D shapes and it is widely used in computer aided design (CAD) software packages since its favorable and flexible nature makes modelling of complex geometries possible. Isogeometric analysis has emerged with the idea of using same basis functions for both analysis and design stages and it aims to eliminate time consumption during required geometry transformation between these stages. NURBS basis functions have been chosen as common basis function because they enable higher continuity and exact geometry contrary to polynomial based finite element method basis functions. Moreover, due to the recursive nature of NURBS, more general and robust algorithms can be developed for computation procedure. In this study, Matlab codes have been developed to use IGA technique in several linear elasticity problems. Thereafter, isogeometric analysis has been used for plasticity problems; uniaxial loading of a sheet, v-die bending and square deep drawing by using LS-DYNA analysis software. Same analyses were also run by using classical finite element method with utilizing another commercial analysis software Abaqus. According to obtained results, accuracy and computational efficiency of IGA have been compared with FEA. At the end, isogeometric analysis was evaluated as a suitable technique for analysis of linear elasticity problems and metal forming processes because it gives more accurate results in shorter time compared to finite element analysis.
Subject Keywords
Isogeometric analysis.
,
Sheet-metal work.
,
Bending.
,
Drawing.
,
Strains and stresses.
,
Springback (Elasticity)
URI
http://etd.lib.metu.edu.tr/upload/12622366/index.pdf
https://hdl.handle.net/11511/27434
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces
Selçuk, Nevin (1997-01-01)
The discrete ordinates method (DOM) and discrete transfer method (DTM) were evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their predictions with exact solutions available from a box-shaped enclosure problem with steep temperature gradients. Comparative testing shows that the S-4 approximation produces better accuracy in radiative energy source term than in flux density in three orders of magnitude less CPU time than that required by the DTM. The S-4 approxi...
Analysis of three block cipher based hash functions : Whirpool, Grøstl and Grindahl
Ismailova, Rita; Diker Yücel, Melek; Department of Cryptography (2012)
The subject of this thesis is the study of cryptographic hash functions, which utilize block ciphers as underlying chain functions. It is mainly concerned with the analysis of the three hash algorithms, the Whirlpool, Grøstl and Grindahl. All these hash functions have underlying block ciphers that are modified versions of the Advance Encryption Standard and we investigate the behavior of these block ciphers under the integral attack. Statistical tests, such as the avalanche test and the collision test, are ...
Performance of DOM and IDA with different angular discretization methods in 3-D absorbing-emitting-scattering media
Ozen, Guzide; Selçuk, Nevin (2013-03-01)
Predicted accuracy and computationally efficiency of Discrete Ordinates Method (DOM) and Improved Differential Approximation (IDA) were evaluated by applying both methods to cubical enclosure problems containing purely isotropically/linearly anisotropically scattering/absorbing-emitting-isotropically scattering medium and comparing their predictions with benchmark solutions available in the literature. Performances of DOM and IDA with S-8, S-10 and T-4 quadratures were assessed by comparing their prediction...
A neural network method for direction of arrival estimation with uniform circular dipole array in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-16)
In recent years application of Neural Network (NN) algorithms in both target tracking problem and DoA estimation have become popular because of the increased computational efficiency This paper presents the implementation of modified neural network algorithm(MN-MUST) to the uniform circular dipole array in the presence of mutual coupling. In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms. In this paper mutual coupling affects on MN-MUST has been i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Özdoğan, “Analysis of metal forming by using isogeometric elements,” M.S. - Master of Science, Middle East Technical University, 2018.