Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Synthesis, analysis and design of a novel mechanism for the trailing edge of a morphing wing
Download
index.pdf
Date
2018
Author
Şahin, Harun Levent
Metadata
Show full item record
Item Usage Stats
4
views
4
downloads
In this thesis, synthesis, analysis and design of a novel scissor-structural mechanism (SSM) with a four-bar (FB) linkage for the trailing edge of a morphing wing has been presented. The SSM, which is deployable, is created via combination of various scissor-like elements (SLEs). In order to provide mobility requirements, a FB linkage is assembled to the proposed SSM. The FB linkage is synthesized and optimized in order to give the structure required torque with a complete rotation. The SSM is designed with a novel kinematic synthesis concept in order to follow the airfoil camber with minimum design error. In this concept, various types of SLEs are assembled together to provide the desired airfoil geometries. The types (translational, polar), the number of SLEs, their orientations with respect to centerline of the airfoil and their distribution frequencies over the chord length are the design parameters, which allow designers to achieve all the possible geometric shapes. The combination rule is optimized in order to satisfy desired airfoil shapes with minimum design error as possible. Moreover, the position, velocity and acceleration analyses of the SSM have also been conducted. In order to prove aerodynamic efficiency of newly created airfoil geometries and obtain pressure distribution over the airfoil, 2D aerodynamic analyses have been done with the package program XFOIL. The flow characteristics used for the analysis are determined by the flight envelope of a generic UAV. Obtained pressure distribution is applied as the lumped force on the joints. By assigning the approximate link masses and mass centers, the dynamic force analysis of the mechanism has also been performed in order to estimate the required torque to drive the synthesized SSM.
Subject Keywords
Wing-warping (Aerodynamics).
,
Airplanes
,
Aerodynamics.
URI
http://etd.lib.metu.edu.tr/upload/12622595/index.pdf
https://hdl.handle.net/11511/27531
Collections
Graduate School of Natural and Applied Sciences, Thesis