Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MDAO for aerodynamic assessment of a morphed wing for the loiter segment of a UAV flight mission
Date
2016-01-01
Author
Yang, Yosheph
Özgen, Serkan
Yaman, Yavuz
Ciarella, Andrea
Hahn, Marco
Beaverstock, Chris S.
Friswell, Michael I.
Metadata
Show full item record
Item Usage Stats
153
views
0
downloads
Cite This
In this paper a detailed overview of a framework for an optimization of a morphing wing is presented. The framework presented here aids the design process of a morphing UAV wing which includes the variety of the flight phases and morphing concepts. The framework consists of two main solvers to compute the aerodynamic assessment of the wing: a fast low-fidelity module that solves the aeroelastic problem by coupling a geometrically nonlinear structural model to a potential flow aerodynamic model and a high-fidelity CFD module for detailed RANS simulation. This framework is later applied to the optimization of a morphing UAV wing for the loiter phase of the flight. The wing described in this paper is the focus of the European Union FP7 CHANGE project.
Subject Keywords
Aerodynamics
,
Aeroelasticity
,
Computational fluid dynamics
,
Unmanned aerial vehicles (UAV)
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959210418&origin=inward
https://hdl.handle.net/11511/73227
DOI
https://doi.org/10.2514/6.2016-0314
Conference Name
24th AIAA/AHS Adaptive Structures Conference, 2016, (4 - 08 Ocak 2016)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Multinucleon transfer in Ni-58+Ni-60 and Ni-60+Ni-60 in a stochastic mean-field approach
Yilmaz, B.; Ayik, S.; Yılmaz, Osman; Umar, A. S. (2018-09-07)
The multinucleon exchange mechanism in Ni-58 + Ni-60 and Ni-60 + Ni-60 collisions is analyzed in the framework of the stochastic mean-field approach. The results of calculations are compared with the time-dependent random-phase approximation (TDRPA) calculations and the recent data of Ni-58 + Ni-60. A good description of the data and a relatively good agreement with the TDRPA calculations are found.
Convergence performance of the approximate factorization methods with multi-block implicit boundary conditions at hypersonic speeds
Koca, Melikşah; Eyi, Sinan; Department of Aerospace Engineering (2022-9)
This thesis study presents convergence characteristics of the implicit approximate factorization methods at hypersonic flow conditions and with 2-dimensional and 3-dimensional geometries. The efficiency of the implicit boundary conditions at block interfaces for the multi-block grids is investigated for different approximate factorization methods. Standard Alternating Direction Implicit (ADI) method, Diagonal Dominant Alternating Direction Implicit method (DDADI) with and without Huang’s sub-iteration corre...
MULTI-OBJECTIVE AERODYNAMIC OPTIMIZATION OF AXIAL TURBINE BLADES USING A NOVEL MULTI-LEVEL GENETIC ALGORITHM
Oeksuz, Oezhan; Akmandor, Ibrahim Sinan (2008-06-13)
In this paper, a new multiploid genetic optimization method handling surrogate models of the CID solutions is presented and applied for multi objective turbine blade aerodynamic optimization problem. A fast, efficient, robust, and automated design method is developed to aerodynamically optimize 3D gas turbine blades. The design objectives are selected as maximizing the adiabatic efficiency and torque so as to reduce the weight, size and cost of the gas turbine engine. A 3-Dimensional steady Reynolds Average...
Aerodynamic modelling and optimization of morphing wings
Körpe, Durmuş Sinan; Özgen, Serkan; Department of Aerospace Engineering (2014)
This thesis deals with aerodynamic optimization of morphing wings under performance and geometric constraints. In order to perform the optimization process, flow solvers computing aerodynamic lift and drag were developed as a function evaluator. A gradient based optimization method was used in order to develop the optimization algorithm. Three dimensional panel method solver was developed in order to obtain lift, pressure drag and induced drag values for a finite wing. Obtained results were compared with di...
Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels
Özdemir, Oğuz; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-12-27)
This thesis proposes and analyzes a motion planning and control schema for unmanned surface vehicles that fuses sampling-based approaches’ probabilistic completeness with closed-loop approaches’ robustness. The Proposed schema is based on the sequential composition of elliptical funnels, and it consists of two stages: tree generation and motion control. For validation of the approach, we carried out experiments using both simulation and physical setup besides the mathematical analysis. In order to have a co...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Yang et al., “MDAO for aerodynamic assessment of a morphed wing for the loiter segment of a UAV flight mission,” presented at the 24th AIAA/AHS Adaptive Structures Conference, 2016, (4 - 08 Ocak 2016), California, Amerika Birleşik Devletleri, 2016, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959210418&origin=inward.