ODYSSEY: a tool for microRNA-mRNA expression and interaction visualization

Download
2018
Taciroğlu, Alperen
MicroRNAs (miRNAs) are non-coding short RNA molecules that are found in all metazoa studied so far. When distinct metazoa genomes considered up to 200 genes encode for unique miRNAs that show variability between species. Regulatory functions of miRNAs have been studied for 20 years starting after their discovery. The research suggests that they are involved in a wide spectrum of biological activities including apoptosis, tumorigenesis, development, homeostasis and viral infections. miRNAs regulate these cellular processes at the posttranscriptional level by binding to the messenger RNAs (mRNAs), leading to an unstable derivative of the initial biological molecule. miRNA targets are under strict evolutionary pressure which further implicates the importance of underlying biological mechanisms. Although there are several Gene/mRNA-miRNA interaction visualization and analysis tools "Odyssey" was built for improved interactive visualization the interaction network of miRNAs with along with their target expressions for a user uploaded dataset. It is built using Shiny package of the R programming language leading to seamless online access and modularity. In the end, I aim to provide users a user-friendly web-application which consists of modules that allows: uploading of their own data; performing differential expression (DGEx) analysis; and visualization of the network of which "Odyssey" builds from either experimentally validated or predicted interactions for individual miRNAs queried by the user. Odyssey further enables the user to filter selected nodes of the networks using fold change cut-offs obtained in DGEx step or expand the network using Gene Ontology (GO) terms to act as a strong predictor of the phenotype of interest for the user-specified biological data. Furthermore, the application has been demonstrated using two different public miRNA-mRNA expression datasets.

Suggestions

Expression and activity analyses of industrially important extracellular enzymes produced by a bacilysin knock-out mutant of Bacillus Subtilis
Aytekin, Samet; Özcengiz, Gülay; Okay, Sezer; Department of Molecular Biology and Genetics (2018)
Bacilysin, the smallest peptide antibiotic known to date, is produced non-ribosomally by Bacillus subtilis by the collective actions of seven proteins transcribed from bacABCDEF operon and bacG gene. Bacilysin is a two-amino acid peptide composed of L-alanine and a modified amino acid, L-anticapsin. Bacilysin biosynthesis was shown to be strongly regulated by quorum sensing through the actions of global regulator proteins including Spo0K, Spo0H, Spo0A, ComQ/ComX, ComP/ComA as well as several Phr proteins, O...
Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A center dot A base pairing and a putative structure of the coralyne-induced homo-adenine duplex
Joung, In Suk; Persil Çetinkol, Özgül; HUD, Nicholas V.; Cheatham, Thomas E. (Oxford University Press (OUP), 2009-12-01)
Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson-Crick DNA. Hud's laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine-adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the s...
Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding
Persil Çetinkol, Özgül (Oxford University Press (OUP), 2009-02-01)
A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T(m)approximate to 60 degrees C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K(a) >10(7) M(-1)), and that the crescent sh...
An integrative approach to structured snp prioritization and representative snp selection for genome-wide association studies
Üstünkar, Gürkan; Aydın Son, Yeşim; Weber, Gerhard Wilhelm; Department of Information Systems (2011)
Single Nucleotide Polymorphisms (SNPs) are the most frequent genomic variations and the main basis for genetic differences among individuals and many diseases. As genotyping millions of SNPs at once is now possible with the microarrays and advanced sequencing technologies, SNPs are becoming more popular as genomic biomarkers. Like other high-throughput research techniques, genome wide association studies (GWAS) of SNPs usually hit a bottleneck after statistical analysis of significantly associated SNPs, as ...
PCR cloning and heterologous expression of Scytalidium thermophilum laccase gene in Aspergillus sojae
Koçlar, Gülden; Ögel, Zümrüt Begüm; Department of Biotechnology (2005)
In this study, Scytalidium thermophilum laccase gene was first cloned into E. coli and then heterologously expressed in A. sojae. S. thermophilum is a thermophilic fungus with an important role in determining selectivity of compost produced for growing Agaricus bisporus. S. thermophilum laccase gene was first cloned by Novo Nordisk Bio Tech, Inc. in 1998. This laccase gene (lccS) has an open reading frame of 2092bp. It is composed of five exons punctuated by four small introns. The coding region, excluding ...
Citation Formats
A. Taciroğlu, “ODYSSEY: a tool for microRNA-mRNA expression and interaction visualization,” M.S. - Master of Science, Middle East Technical University, 2018.