Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical modeling of fiber reinforced composite deep beams
Download
index.pdf
Date
2018
Author
Yağmur, Eren
Metadata
Show full item record
Item Usage Stats
325
views
158
downloads
Cite This
Discrete fibers are often used as reinforcement to increase the tensile and shear strengths of concrete. For many years, the behavior of fiber reinforced composite members has been investigated both experimentally and analytically. The influence of fibers on the behavior of shear critical members is quite significant, therefore, it is inevitable to develop a method, which estimates the shear strength of fiber reinforced composite deep beams realistically. This is why one of the main objectives of this study is to propose a shear strength equation and a method to obtain the flexural strength of deep beams and coupling beams with different types and amounts of fibers and reinforcement detailing under varying loading conditions. The predicted shear strengths and strengths computed from equations recommended by other researchers are then compared with the experimental results that are tabulated in a database constructed for this analytical study. Another main purpose of this study is to recommend a model that can be utilized in the nonlinear analysis of coupling beams. When the analytical results obtained from the proposed method are compared with the experimental results, it is observed that the behavior is predicted with adequate accuracy, even for coupled wall systems.
Subject Keywords
Concrete beams.
,
Shear (Mechanics).
,
Fibrous composites.
,
Strength of materials.
URI
http://etd.lib.metu.edu.tr/upload/12622805/index.pdf
https://hdl.handle.net/11511/27793
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Determination of the Tensile Strength of Different Fiber Reinforced Concrete Mixtures
Ardoğa, Mehmet Kemal; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-21)
Enhancing the tensile performance of concrete is the main advantage when fibers are added to this type of building materials. This improvement is usually measured through indirect methods like bending or split-tensile tests, in a way similar to normal concrete due to the absence of a standard tensile test for such purpose. Naturally, this type of tests does not determine the real tensile strength of the fiber reinforced concrete. Hence an important parameter, that is needed in modelling and designing proces...
Comparative evaluation of steel mesh, steel fiber and high performance polypropylene fiber-reinforced concrete in panel/beam tests
Ceylan, Semih; Turanlı, Lütfullah; Department of Civil Engineering (2014)
Comparison of concrete mixtures containing steel mesh, steel fiber and polypropylene fibers were evaluated in terms of toughness, flexural strength, compressive strength and split tensile strength. Five types of concrete were prepared with steel mesh, steel fiber and polypropylene fiber with the identical water/cement (w/c) ratio and the identical workability. 10x60x60 cm plates, 8x8x32 cm beams and 10x20 cm cylindrical concrete specimens were prepared. Compressive strength, split-tensile strength and tough...
Determination of mechanical properties of hybrid fiber reinforced concrete
Yurtseven, Alp Eren; Tokyay, Mustafa; Department of Civil Engineering (2004)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinfo...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Delamination of compressively stressed orthotopic functionally graded material coatings under thermal loading
YILDIRIM, BORA; Yilmaz, Suphi; Kadıoğlu, Fevzi Suat (ASME International, 2008-09-01)
The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Yağmur, “Analytical modeling of fiber reinforced composite deep beams,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.