Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determination of mechanical properties of hybrid fiber reinforced concrete
Download
index.pdf
Date
2004
Author
Yurtseven, Alp Eren
Metadata
Show full item record
Item Usage Stats
594
views
207
downloads
Cite This
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinforced concrete. For this purpose nine mixes, one plain control mix and eight fiber reinforced mixes were prepared. Six of the mixes were reinforced in a hybrid form. Four different types of fibers were used in combination, two of which were macro steel fibers, and the other two were micro fibers. Volume percentage of fiber inclusion was kept constant at 1.5%. In hybrid reinforced mixes volume percentage of macro fibers was 1.0% whereas the remaining fiber inclusion was v composed of micro fibers. Slump test was carried out for each mix in the fresh state. 28-day compressive strength, flexural tensile strength, flexural toughness, and impact resistance tests were performed in the hardened state. Various numerical analyses were carried out to quantify the determined mechanical properties and to describe the effects of fiber inclusion on these mechanical properties.
Subject Keywords
Materials of Engineering and Construction.
,
Mechanics of Materials.
URI
http://etd.lib.metu.edu.tr/upload/12605268/index.pdf
https://hdl.handle.net/11511/14446
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Mechanical properties of hybrid fiber reinforced concrete
Yurtseven, A. E.; Yaman, İsmail Özgür; Tokyay, Mustafa (2006-07-07)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite can be termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber re...
Investigation of the variations in microstructure and mechanical properties of dual-matrix ductile iron by Magnetic Barkhausen Noise analysis
Gür, Cemil Hakan; Erdogan, Mehmet (Informa UK Limited, 2008-01-01)
The variations in the microstructure and tensile properties of dual-matrix ductile irons have been investigated non-destructively by Magnetic Barkhausen Noise (MBN) method. Specimens have been intercritically austenitised at 795 degrees C and 815 degrees C for 20 minutes, and then oil-quenched to obtain different martensite volume fractions. Two specimens, namely as-cast and oil-quenched from 900 degrees C, were prepared for comparison purpose. To investigate the effect of tempering, some specimens were tem...
Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
Excessive damage increase in dual phase steels under high strain rates and temperatures
Cobanoglu, Merve; Ertan, Rasim K.; Şimşir, Caner; Efe, Mert (SAGE Publications, 2020-09-01)
Damage formation in dual phase steels is a complex process and it may be sensitive to the deformation conditions and mechanisms. In this study, the damage parameter is measured and compared under quasi-static and industrial forming conditions (temperatures: 25 vs 200, 300 degrees C and strain rates: 10(-3)vs 10 s(-1)) for DP590 and DP800 steels. Resonance frequency and ultrasonic sound velocity techniques are utilized for the measurements to test the effectiveness and validity of each technique. At a given ...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. E. Yurtseven, “Determination of mechanical properties of hybrid fiber reinforced concrete,” M.S. - Master of Science, Middle East Technical University, 2004.