2D/3D human pose estimation using deep convolutional neural nets

Download
2019
Kocabaş, Muhammed
In this thesis, we propose algorithms to estimate 2D/3D human pose from single view images. In the first part of the thesis, we present MultiPoseNet, a novel bottom-up multiperson pose estimation architecture that combines a multi-task model with a novel assignment method. MultiPoseNet can jointly handle person detection, keypoint detection, person segmentation and pose estimation problems. The novel assignment method is implemented by the Pose Residual Network (PRN) which receives keypoint and person detections, and produces accurate poses by assigning keypoints to person instances. On the COCO keypoints dataset, our pose estimation method outperforms all previous bottom-up methods both in accuracy (+4-point mAP over previous best result) and speed; it also performs on par with the best top-down methods while being at least 4x faster. Our method is the fastest real time system with _23 frames/sec. In the second part of the thesis, we present EpipolarPose which is a self-supervised training methodology for single person monocular human pose estimation and Pose Structure Score, a structure aware performance measure for 3D human pose estimation. Training accurate 3D human pose estimators requires large amount of 3D ground-truth data which is costly to collect. Various weakly or self supervised pose estimation methods have been proposed due to lack of 3D data. Nevertheless, these methods, in addition to 2D ground-truth poses, require either additional supervision in various forms (e.g. unpaired 3D ground truth data, a small subset of labels) or the camera parameters in multiview settings. To address these problems, we present EpipolarPose, a self-supervised learning method for 3D human pose estimation, which does not need any 3D ground-truth data or camera extrinsics. During training, EpipolarPose estimates 2D poses from multi-view images, and then, utilizes epipolar geometry to obtain a 3D pose and camera geometry which are subsequently used to train a 3D pose estimator. We demonstrate the effectiveness of our approach on standard benchmark datasets i.e. Human3.6M and MPI-INF-3DHP where we set the new state-of-the-art among weakly/self-supervised methods. Furthermore, we propose a new performance measure Pose Structure Score (PSS) which is a scale invariant, structure aware measure to evaluate the structural plausibility of a pose with respect to its ground truth.
Citation Formats
M. Kocabaş, “2D/3D human pose estimation using deep convolutional neural nets,” M.S. - Master of Science, 2019.