Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Parallel computing in linear mixed models
Date
2020-09-01
Author
Gökalp Yavuz, Fulya
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
345
views
0
downloads
Cite This
In this study, we propose a parallel programming method for linear mixed models (LMM) generated from big data. A commonly used algorithm, expectation maximization (EM), is preferred for its use of maximum likelihood estimations, as the estimations are stable and simple. However, EM has a high computation cost. In our proposed method, we use a divide and recombine to split the data into smaller subsets, running the algorithm steps in parallel on multiple local cores and combining the results. The proposed method is used to fit LMM with dense and sparse parameters and for large number of observations. It is faster than the classical approach and generalizes for big data. Supplementary sources for the proposed method are available in the R package lmmpar.
Subject Keywords
Statistics, Probability and Uncertainty
,
Statistics and probability
,
Computational mathematics
,
Big data
,
Divide and recombine
,
EM
,
Linear mixed models
,
R package
URI
https://hdl.handle.net/11511/37629
Journal
COMPUTATIONAL STATISTICS
DOI
https://doi.org/10.1007/s00180-019-00950-7
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Marginalized transition random effect models for multivariate longitudinal binary data
İlk Dağ, Özlem (Wiley, 2007-03-01)
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within-subject, dependence, either...
Regression analysis with a dtochastic design variable
Sazak, HS; Tiku, ML; İslam, Muhammed Qamarul (Wiley, 2006-04-01)
In regression models, the design variable has primarily been treated as a nonstochastic variable. In numerous situations, however, the design variable is stochastic. The estimation and hypothesis testing problems in such situations are considered. Real life examples are given.
A marginalized multilevel model for bivariate longitudinal binary data
Inan, Gul; İlk Dağ, Özlem (Springer Science and Business Media LLC, 2019-06-01)
This study considers analysis of bivariate longitudinal binary data. We propose a model based on marginalized multilevel model framework. The proposed model consists of two levels such that the first level associates the marginal mean of responses with covariates through a logistic regression model and the second level includes subject/time specific random intercepts within a probit regression model. The covariance matrix of multiple correlated time-specific random intercepts for each subject is assumed to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Gökalp Yavuz, “Parallel computing in linear mixed models,”
COMPUTATIONAL STATISTICS
, pp. 1273–1289, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37629.