Flow and turbulence structure around a spur dike in a channel with a large scour hole

2011-12
The flow and turbulence structure around a vertical-wall spur dike that extends over the whole depth of a straight channel are investigated using detached eddy simulation (DES). The channel Reynolds number in DES and the corresponding experiment is Re(D) = 2.4 x 10(5), which is typical of applications in small rivers and outside the range where well-resolved large eddy simulation (LES) can be conducted. The bathymetry at equilibrium scour conditions is obtained from a loose bed experiment. This paper discusses the main mechanisms which drive the growth of the scour hole upstream and downstream from the spur dike during the later stages of the scour process, and how these mechanisms change between the initial (flat bed conditions) and later stages of the scour process. Scale effects are investigated by comparing simulation results at Re(D) = 2.4 x 10(5) with those from simulations performed at a much lower Reynolds number, Re(D) = 18,000. Results show that while the structure of the horseshoe vortex (HV) system changes with respect to the case in which the bed is flat, the main necklace vortex of the HV system is still subject to large-scale aperiodic oscillations, similar to the ones observed in flows past in-stream bluff-body obstacles mounted on a flat surface. Present results show that the amplification of the horizontal vorticity within the lower part of the separated shear layer (SSL) and the associated formation of streaks of high-bed shear stress below the region where the SSL eddies are convected in the near-bed region is a general feature of high-Reynolds-number flow past a vertical-wall spur dike placed in a loose-bed channel at all stages of the scour process.
Water Resources Research

Suggestions

Flow and turbulence structure around abutments with sloped sidewalls
Köken, Mete (American Society of Civil Engineers (ASCE), 2014-01-01)
Results of eddy-resolving numerical simulations are used to investigate flow and turbulence structure around an isolated abutment with sloped sidewalls at conditions corresponding to the start (flatbed) and the end (equilibrium bathymetry) of the scour process. Besides cases where the abutment is not protected against scour using riprap, the paper considers cases where a riprap apron of constant width is present around the base of the abutment at the start of the scour process. The paper also discusses the ...
Flow structure and large scale turbulence in an open channel bend of strong curvature with flat and deformed bed
Constantinescu, G.; Köken, Mete (2014-09-05)
Results of Three-Dimensional (3D) Detached Eddy Simulation (DES) are used to discuss changes in flow structure and large-scale turbulence structures in a high-curvature open channel between conditions present at the start (flat bed) and at the end (equilibrium deformed bed) of the erosion-deposition process. The flow in a 193 degrees bend is simulated, for which the ratio between the bend curvature and the channel width is close to 1.3. For these geometrical parameters, the cross-stream secondary flow and a...
Structure of turbulence within a sheared wake of a rotor blade
Soranna, Francesco; Chow, Yi Chih; Uzol, Oğuz; Katz, Joseph (null; 2006-07-17)
Stereoscopic PIV measurements examine the flow structure and turbulence within a rotor near wake located within a non-uniform field generated by a row of Inlet Guide Vanes (IGVs). The experiments are performed in a refractive index matched facility that provides unobstructed view of the entire flow field. The data are acquired at 10 closely spaced radial planes located near mid-span, enabling measurements of all the components of the phase averaged velocity and strain rate, as well as the Reynolds stress an...
Flow Structure on Nonslender Delta Wing: Reynolds Number Dependence and Flow Control
Zharfa, Mohammadreza; Ozturk, Ilhan; Yavuz, Mehmet Metin (2016-03-01)
The flow structure over a 35 deg swept delta wing is characterized in a low-speed wind tunnel using techniques of laser-illuminated smoke visualization, laser Doppler anemometry, and surface-pressure measurements. The effects of Reynolds numbers and attack angles on the evaluation of flow patterns are addressed within the broad range of Reynolds number 10(4) < Re < 10(5) and attack angle 3 deg < alpha < 10 deg. In addition, the effect of steady blowing through the leading edges of the wing on flow structure...
Tsunami-induced scour around monopile foundations
Larsen, Bjarke Eltard; Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu (2017-11-01)
A fully-coupled (hydrodynamic and morphologic) numerical model is presented, and utilized for the simulation of tsunami-induced scour around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations at moderate depths i.e. for depths less than 30 m. The model is based on solutions to Reynolds-averaged Navier-Stokes equations, coupled with two-equation k a, turbulence closure, with additional bed and suspended load descriptions forming the basis for sea bed morpholo...
Citation Formats
M. Köken, “Flow and turbulence structure around a spur dike in a channel with a large scour hole,” Water Resources Research, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28238.