Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain
Date
2011-12
Author
Ozgun, Ozlem
Apaydin, Gökhan
Kuzuoğlu, Mustafa
Sevgi, Levent
Metadata
Show full item record
Item Usage Stats
573
views
0
downloads
Cite This
A MATLAB-based one-way and two-way split-step parabolic equation software tool (PETOOL) has been developed with a user-friendly graphical user interface (GUI) for the analysis and visualization of radio-wave propagation over variable terrain and through homogeneous and inhomogeneous atmosphere. The tool has a unique feature over existing one-way parabolic equation (PE)-based codes, because it utilizes the two-way split-step parabolic equation (SSPE) approach with wide-angle propagator, which is a recursive forward-backward algorithm to incorporate both forward and backward waves into the solution in the presence of variable terrain. First, the formulation of the classical one-way SSPE and the relatively-novel two-way SSPE is presented, with particular emphasis on their capabilities and the limitations. Next, the structure and the GUI capabilities of the PETOOL software tool are discussed in detail. The calibration of PETOOL is performed and demonstrated via analytical comparisons and/or representative canonical tests performed against the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD). The tool can be used for research and/or educational purposes to investigate the effects of a variety of user-defined terrain and range-dependent refractivity profiles in electromagnetic wave propagation.
Subject Keywords
PETOOL
,
Electromagnetic propagation
,
Refractivity
,
Ducting
,
Split-step parabolic equation
,
Terrain factors
,
Multipath effects
,
Validation, verification and calibration
,
MATLAB program
URI
https://hdl.handle.net/11511/28310
Journal
Computer Physics Communications
DOI
https://doi.org/10.1016/j.cpc.2011.07.017
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Two way split step parabolic equation algorithm for tropospheric propagation Tests and comparisons
ÖZGÜN, ÖZLEM; APAYDIN, GÖKHAN; Kuzuoğlu, Mustafa; SEVGİ, LEVENT (2010-08-25)
This paper introduces a two-way split-step parabolic equation propagation tool (2W-SSPE), which is capable of handling both forward and backward scattered waves during groundwave propagation over an irregular terrain, through inhomogeneous atmosphere. The algorithm is calibrated and tested against reference data obtained with the help of image method and the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD).
Recursive Two-Way Parabolic Equation Approach for Modeling Terrain Effects in Tropospheric Propagation
Ozgun, Ozlem (2009-09-01)
The Fourier split-step method is a one-way marching-type algorithm to efficiently solve the parabolic equation for modeling electromagnetic propagation in troposphere. The main drawback of this method is that it characterizes only forward-propagating waves, and neglects backward-propagating waves, which become important especially in the presence of irregular surfaces. Although ground reflecting boundaries are inherently incorporated into the split-step algorithm, irregular surfaces (such as sharp edges) in...
Real-Time Moving Target Search
Undeger, Cagatay; Polat, Faruk (2007-11-23)
In this paper, we propose a real-time moving target search algorithm for dynamic and partially observable environments, modeled as grid world. The proposed algorithm, Real-time Moving Target Evaluation Search (MTES), is able to detect the closed directions around the agent, and determine the best direction that avoids the nearby obstacles, leading to a moving target which is assumed to be escaping almost optimally. We compared our proposal with Moving Target Search (NITS) and observed a significant improvem...
GF (2M) multiplier implementation on a partially reconfigurable FPGA
Kocalar, Gizem; Bazlamaçcı, Cüneyt Fehmi; Department of Electrical and Electronics Engineering (2015)
The thesis aims to design and implement a Galois field multiplier IP block that adapts to changing input traffic conditions, using partial reconfiguration feature of FPGAs. Two different multiplier blocks are used for high and low traffic rates. First, an area efficient multiplier block with small area utilization and low power consumption is designed by using splitting type multiplication algorithms. Second, a high performance multiplier IP block with higher resource consumption but better time performance is d...
MIPS Extension for a TCAM Based Parallel Architecture for Fast IP Lookup
Erdem, Oguzhan; Bazlamaçcı, Cüneyt Fehmi (2009-09-16)
This paper discusses the feasibility of the use of minimum independent prefix set (MIPS) algorithm in a ternary content addressable memory (TCAM) based parallel architecture proposed for high speed packet switching. MIPS algorithm is proposed earlier to transform a forwarding table into one that contains the minimum independent prefix set. In this paper we propose MIPS algorithm to be integrated into a TCAM based parallel IP lookup engine. We first analyze the table compression performance of the MIPS algor...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ozgun, G. Apaydin, M. Kuzuoğlu, and L. Sevgi, “PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain,”
Computer Physics Communications
, pp. 2638–2654, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28310.