Robust Optimum and Near-Optimum Beamformers for Decode-and-Forward Full-Duplex Multi-Antenna Relay With Self-Energy Recycling

Demir, Ozlem Tugfe
Tuncer, Temel Engin
In this paper, we consider the full-duplex decode-and-forward wireless-powered relaying system, which employs energy harvesting protocol with power splitting. The robust joint optimum relay transmit beamformer and power splitting factor are obtained for the quality of service (QoS)-aware problem for the first time in the literature. The optimum solution is found by analyzing the Karush-Kuhn-Tucker conditions, thanks to the effective reformulation of the problem in an equivalent and simplified manner. In addition, the signal-to-interference-plus-noise ratio (SINR) maximization problem is investigated in order to find the robust optimum solution. The simulation results verify the optimality of the proposed method compared with the sub-optimum one which is presented by Zhao et al.. In the next part of this paper, the considered system is generalized by employing multiple receive antennas at the relay. Both QoS-aware and SINR maximization problems are considered. The near-optimum relay transmit and receive beamformers as well as power splitting factor are found by optimizing the variables alternately. First, transmit beamformer and power splitting factor are found optimally for a given initial receive beamformer. Then, the optimum receive beamformer is obtained. Relay with multiple-receive antennas is shown to perform better than the single receive antenna relay in terms of SINR and transmission power.
IEEE Transactions on Wireless Communications


Implementation of Energy-Neutral Operation on Vibration Energy Harvesting WSN
Chamanian, S.; Baghaee, S.; Ulusan, H.; Zorlu, O.; Uysal, Elif; Külah, Haluk (2019-04-15)
This paper presents a method for realizing energy neutral operation on energy harvesting wireless sensor nodes (WSN) and its implementation, regarding that the available environmental energy is unpredictable and changes over time. The method utilizes adaptive duty cycling which provides energy-neutral operation according to the energy available in the environment and the instantaneous energy state of the node through an energy management circuit. The proposed method is implemented using a MicaZ mote as the ...
Optimization of AA-Battery Sized Electromagnetic Energy Harvesters: Reducing the Resonance Frequency Using a Non-Magnetic Inertial Mass
Yasar, Oguz; Ulusan, Hasan; Zorlu, Ozge; Sardan-Sukas, Ozlem; Külah, Haluk (2018-06-01)
This paper presents an optimization study for a miniature electromagnetic energy harvester, by incorporating a non-magnetic inertial mass (tungsten) along with the axially oriented moving magnets. The aim is to decrease the operation frequency and increase the output power of the harvester with the usage of higher density material and larger magnetic flux density. Dimensions of the magnets are optimized according to the harvester dimensions and magnetic flux gradients. Additionally, coil length, width, resi...
Energy Harvesting Through Lumped Elements Located on Metamaterial Absorber Particles
Gunduz, Ozan T.; Sabah, Cumali (2015-09-09)
We propose and examine an enhanced version of a multi-band metamaterial absorber for an energy harvesting application. The numerical results of the multi-band absorption characteristics of no-load conditions are presented and compared with the loading conditions. At most % 50 of the incoming wave energy whose correspondence is 0.25 Watt is converted to real power at the resistive loads at 5.88 GHz by the usage of 2000 ohms loads. In order to evaluate the harvesting efficiency, three different types of effic...
Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; DELİHACIOĞLU, KEMAL; Sabah, Cumali (2015-09-01)
An electromagnetic (EM) energy harvesting application based on metamaterials is introduced. This application is operating at the the industrial, scientific, and medical band (2.40 GHz), which is especially chosen because of its wide usage area. A square ring resonator (SRR) which has two gaps and two resistors across the gaps on it is used. Chip resistors are used to deliver the power to any active component that requires power. Transmission and reflection characteristics of the metamaterial absorber for en...
Empirical Proof of Concept for TE Generation in Mobile Computers
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
Thermoelectric (TE) module integration into a mobile computer has been experimentally investigated in this paper for its energy harvesting opportunities. For this purpose, a detailed Finite Element Analysis (FEA) model was constructed for thermal simulations. The model outputs were then correlated with the thermal validation results of the target system. A suitable "warm spot" has been selected, based on the FEA model, to integrate a commercial TE micro-module inside the system with minimum or no notable im...
Citation Formats
O. T. Demir and T. E. Tuncer, “Robust Optimum and Near-Optimum Beamformers for Decode-and-Forward Full-Duplex Multi-Antenna Relay With Self-Energy Recycling,” IEEE Transactions on Wireless Communications, pp. 1566–1580, 2019, Accessed: 00, 2020. [Online]. Available: