Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Building Detection With Decision Fusion
Date
2013-6
Author
Senaras, Caglar
Ozay, Mete
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
Item Usage Stats
255
views
0
downloads
Cite This
A novel decision fusion approach to building detection problem in VHR optical satellite images is proposed. The method combines the detection results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG). After an initial segmentation and pre-processing step, a large variety of color, texture and shape features are extracted from each segment. Then, the segments, represented in different feature spaces are classified by different base-layer classifiers of the FSG architecture. The class membership values of the segments, which represent the decisions of different base-layer classifiers in a decision space, are aggregated to form a fusion space which is then fed to a meta-layer classifier of the FSG to label the vectors in the fusion space. The paper presents the performance results of the proposed decision fusion model by a comparison with the state of the art machine learning algorithms. The results show that fusing the decisions of multiple classifiers improves the performance, when they are ensembled under the suggested hierarchical learning architecture.
Subject Keywords
Building detection
,
Segmentation
,
Multi-layer classification
,
Ensemble learning
,
Decision fusion
,
Fuzzy kappa-nearest neighbors classification
URI
https://hdl.handle.net/11511/28379
Journal
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
DOI
https://doi.org/10.1109/jstars.2013.2249498
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
AUTOMATIC BUILDING DETECTION WITH FEATURE SPACE FUSION USING ENSEMBLE LEARNING
Senaras, Caglar; Yuksel, Baris; Ozay, Mete; Yarman-Vural, Fatos (2012-07-27)
This paper proposes a novel approach to building detection problem in satellite images. The proposed method employs a two layer hierarchical classification mechanism for ensemble learning. After an initial segmentation, each segment is classified by N different classifiers using different features at the first layer. The class membership values of the segments, which are obtained from different base layer classifiers, are ensembled to form a new fusion space, which forms a linearly separable simplex. Then, ...
Self-supervised building detection with decision fusion
Şenaras, Çağlar; Yarman Vural, Fatoş Tunay; Eren, Pekin Erhan; Department of Information Systems (2013)
This thesis proposes a new building detection framework for monocular satellite images, called Self-Supervised Decision Fusion (SSDF). The model is based on the idea of self-supervision, which aims to generate training data automatically from each individual test image, without any human interaction. This principle allows us to use the advantages of the supervised classifiers in a fully automated framework. The technical shortcomings of the available supervised and unsupervised algorithms, such as difficult...
Building Detection in satellite images by textural features and Adaboost
CETIN, MELIH; Halıcı, Uğur (2010-08-24)
A method based on textural features and Adaboost for detecting buildings in satellite images is proposed. Several local textural features including mean and standard deviation of image intensity and gradient, Zernike moments, Circular-Mellin features, Haralick features, Fourier Power Spectrum, Wavelets, Gabor Filters, and a set features extracted from HSV color space are extracted. Adaboost learning algorithm is employed for both classification and determining the beneficial feature subset, due to its featu...
A Self-Supervised Decision Fusion Framework for Building Detection
Senaras, Caglar; Yarman Vural, Fatoş Tunay (2016-05-01)
In this study, a new building detection framework for monocular satellite images, called self-supervised decision fusion (SSDF) is proposed. The model is based on the idea of self-supervision, which aims to generate training data automatically from each individual test image, without human interaction. This approach allows us to use the advantages of the supervised classifiers in a fully automated framework. We combine our previous supervised and unsupervised building detection frameworks to suggest a self-...
Automated Detection of Arbitrarily Shaped Buildings in Complex Environments From Monocular VHR Optical Satellite Imagery
Ok, Ali Ozgun; Senaras, Caglar; Yuksel, Baris (2013-03-01)
This paper introduces a new approach for the automated detection of buildings from monocular very high resolution (VHR) optical satellite images. First, we investigate the shadow evidence to focus on building regions. To do that, we propose a new fuzzy landscape generation approach to model the directional spatial relationship between buildings and their shadows. Once all landscapes are collected, a pruning process is developed to eliminate the landscapes that may occur due to non-building objects. The fina...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Senaras, M. Ozay, and F. T. Yarman Vural, “Building Detection With Decision Fusion,”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, pp. 1295–1304, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28379.